JEREMY WILUSZ

TitleAssociate Professor
InstitutionBaylor College of Medicine
DepartmentDepartment of Biochemistry and Molecular Pharmacology
AddressOne Baylor Plaza
vCardDownload vCard
    Other Positions
    TitleAssociate Professor
    InstitutionBaylor College of Medicine
    DepartmentTherapeutic Innovation Center
    DivisionTherapeutic Innovation Center


    Collapse Biography 
    Collapse education and training
    MIT, Cambridge, MAPostdoc01/2014
    Cold Spring Harbor Laboratory, Cold Spring Harbor, NYPh.D.05/2009
    Johns Hopkins University, BaltimoreB.S.05/2005

    Collapse Overview 
    Collapse overview
    The sequencing of the human genome provided quite a surprise to many when it was determined that there are only ~20,000 protein-coding genes, representing less than 2% of the total genomic sequence. Since other less complex eukaryotes like the nematode C. elegans have a very similar number of genes, it quickly became clear that the developmental and physiological complexity of humans probably can not be solely explained by proteins. We now know that most of the human genome is transcribed, yielding a complex repertoire of RNAs that includes tens of thousands of individual noncoding RNAs with little or no protein-coding capacity. Among these are well-studied small RNAs, such as microRNAs, as well as many other classes of small and long transcripts whose functions and mechanisms of biogenesis are less clear – but likely no less important. This is because many of these poorly characterized RNAs exhibit cell type-specific expression or are associated with human diseases, including cancer and neurological disorders. Our goal is to characterize the mechanisms by which these non-canonical RNAs are generated, regulated, and function, thereby revealing novel fundamental insights into RNA biology and developing new methods to treat diseases.

    Much of our recent work has focused on circular RNAs, which are generated from thousands of protein-coding genes. At some genes, the abundance of the circular RNA exceeds that of the associated linear mRNA by a factor of 10, raising the interesting possibility that the function of some protein-coding genes may be to produce circular noncoding RNAs, not proteins. These circular RNAs are generated when the pre-mRNA splicing machinery “backsplices” and joins a splice donor to an upstream splice acceptor. We showed that repetitive elements, e.g. SINE elements, in the flanking introns are critical determinants of whether the intervening exon(s) circularize. When repeat sequences from the flanking introns base pair to one another, the splice sites are brought into close proximity and backsplicing occurs. This knowledge allowed us to generate plasmids that efficiently produce any circular RNA in species ranging from humans to flies. We have further shown that the ratio of linear to circular RNA produced from a given gene is modulated by a number of factors, including hnRNPs, SR proteins, core spliceosome, and transcription termination proteins. Surprisingly, when spliceosome components were depleted or inhibited pharmacologically, the steady-state levels of circular RNAs increased while expression of their associated linear mRNAs concomitantly decreased. Inhibition or slowing of canonical pre-mRNA processing events thus shifts the steady-state output of protein-coding genes towards circular RNAs, which likely helps explain why and how circular RNAs show tissue-specific expression profiles. Once generated, we showed that most circular RNAs are exported to the cytoplasm using a length-dependent and evolutionarily conserved pathway. It still remains largely unclear what most circular RNAs do, although two are known to efficiently modulate the activity of microRNAs. Ongoing efforts aim to further elucidate the mechanisms by which circular RNAs are produced, regulated, and function to control cell physiology and impact human diseases.

    We are additionally using high-throughput screening approaches to reveal new insights into how gene outputs are controlled. We recently revealed that the multi-subunit Integrator (Int) complex catalyzes premature transcription termination at hundreds of protein-coding gene loci. It was previously known that Integrator endonucleolytically cleaves the 3’ ends of nascent small nuclear RNAs (snRNAs) in a key step in the biogenesis of these noncoding RNAs. Our work significantly expanded this observation as we revealed that the RNA endonuclease component of Integrator (the IntS11 subunit) also cleaves many nascent Drosophila mRNAs soon after transcription initiation. Unlike what is observed at snRNA gene loci, the short nascent mRNAs generated from Integrator cleavage are degraded from their 3’ ends by the RNA exosome. This is coupled to premature transcription termination, and these Integrator catalyzed events repress the expression of some full-length mRNAs by more than 100-fold. Integrator thus unexpectedly can function as a tuner or even an on/off switch to control transcriptional outputs.

    My lab has provided additional important insights into how the 3’ ends of linear RNAs are generated and regulated. We showed that the MALAT1 locus, which is over-expressed in many human cancers, produces a long nuclear-retained noncoding RNA as well as a tRNA-like cytoplasmic small RNA (known as mascRNA). Despite being an RNA polymerase II transcript, the 3’ end of MALAT1 is produced not by canonical cleavage/polyadenylation but instead by recognition and cleavage of the tRNA-like structure by RNase P. Mature MALAT1 thus lacks a poly(A) tail, yet is expressed at a level higher than many protein-coding genes due to a highly conserved triple helical structure protecting its 3’ end. We continue to identify and characterize additional RNAs whose 3’ ends are generated via unexpected mechanisms, thereby revealing novel paradigms for how RNAs are processed and, most importantly, new classes of RNAs with important biological functions.
    Collapse keywords

    Collapse Research 
    Collapse research activities and funding
    R35GM119735     (WILUSZ, JEREMY E)Sep 1, 2016 - May 31, 2026
    NIH
    Regulatory roles for the Integrator complex and circular RNAs
    Role: Principal Investigator

    R00GM104166     (WILUSZ, JEREMY E)Feb 1, 2013 - Mar 31, 2017
    NIH
    Regulation of noncoding RNA biogenesis and function
    Role: Principal Investigator

    K99GM104166     (WILUSZ, JEREMY E)Feb 1, 2013 - Jan 31, 2014
    NIH
    Regulation of noncoding RNA biogenesis and function
    Role: Principal Investigator

    Collapse Featured Content 
    Collapse Twitter

    Collapse Bibliographic 
    Collapse selected publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Faculty can login to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Scacchetti A, Shields EJ, Trigg NA, Lee GS, Wilusz JE, Conine CC, Bonasio R. A ligation-independent sequencing method reveals tRNA-derived RNAs with blocked 3' termini. Mol Cell. 2024 Oct 03; 84(19):3843-3859.e8. PMID: 39096899; PMCID: PMC11455606.
      Citations:    Fields:    Translation:AnimalsCells
    2. Morandell J, Monziani A, Lazioli M, Donzel D, D?ring J, Oss Pegorar C, D'Anzi A, Pellegrini M, Mattiello A, Bortolotti D, Bergonzoni G, Tripathi T, Mattis VB, Kovalenko M, Rosati J, Dieterich C, Dassi E, Wheeler VC, Ellederov? Z, Wilusz JE, Viero G, Biagioli M. CircHTT(2,3,4,5,6)- co-evolving with the HTT CAG-repeat tract - modulates Huntington's disease phenotypes. Mol Ther Nucleic Acids. 2024 Sep 10; 35(3):102234. PMID: 38974999; PMCID: PMC11225910.
      Citations:    
    3. Wright BW, Wilusz JE. An unexpected path for Malat1 in neurons: trafficking out of the nucleus for translation. Genes Dev. 2024 05 21; 38(7-8):291-293. PMID: 38688680; PMCID: PMC11146587.
      Citations:    Fields:    Translation:AnimalsCells
    4. Fuchs Wightman F, Lukin J, Giusti SA, Soutschek M, Bragado L, Pozzi B, Pierelli ML, Gonz?lez P, Fededa JP, Schratt G, Fujiwara R, Wilusz JE, Refojo D, de la Mata M. Influence of RNA circularity on Target RNA-Directed MicroRNA Degradation. Nucleic Acids Res. 2024 Apr 12; 52(6):3358-3374. PMID: 38381063; PMCID: PMC11014252.
      Citations: 2     Fields:    Translation:HumansAnimalsCells
    5. Du C, Waltzer WC, Wilusz JE, Spaliviero M, Darras F, Romanov V. Circular STAG2 RNA Modulates Bladder Cancer Progression via miR-145-5p/TAGLN2 and Is Considered as a Biomarker for Recurrence. Cancers (Basel). 2024 Feb 28; 16(5). PMID: 38473339; PMCID: PMC10930502.
      Citations: 1     
    6. Lu F, Park BJ, Fujiwara R, Wilusz JE, Gilmour DS, Lehmann R, Lionnet T. Integrator-mediated clustering of poised RNA polymerase II synchronizes histone transcription. bioRxiv. 2024 Jan 04. PMID: 37873455; PMCID: PMC10592978.
      Citations:    
    7. Xiao MS, Wilusz JE. Purification of Circular RNAs Using Poly(A) Tailing Followed by RNase R Digestion. Methods Mol Biol. 2024; 2765:3-19. PMID: 38381331.
      Citations:    Fields:    
    8. Fujiwara R, Zhai SN, Liang D, Shah AP, Tracey M, Ma XK, Fields CJ, Mendoza-Figueroa MS, Meline MC, Tatomer DC, Yang L, Wilusz JE. IntS6 and the Integrator phosphatase module tune the efficiency of select premature transcription termination events. Mol Cell. 2023 Dec 21; 83(24):4445-4460.e7. PMID: 37995689; PMCID: PMC10841813.
      Citations:    Fields:    Translation:AnimalsCells
    9. Scacchetti A, Shields EJ, Trigg NA, Wilusz JE, Conine CC, Bonasio R. A ligation-independent sequencing method reveals tRNA-derived RNAs with blocked 3' termini. bioRxiv. 2023 Jun 08. PMID: 37333231; PMCID: PMC10274639.
      Citations:    
    10. Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023 06; 24(6):430-447. PMID: 36596869; PMCID: PMC10213152.
      Citations: 73     Fields:    Translation:Cells
    11. Chen LL, Bindereif A, Bozzoni I, Chang HY, Matera AG, Gorospe M, Hansen TB, Kjems J, Ma XK, Pek JW, Rajewsky N, Salzman J, Wilusz JE, Yang L, Zhao F. A guide to naming eukaryotic circular RNAs. Nat Cell Biol. 2023 Jan; 25(1):1-5. PMID: 36658223; PMCID: PMC10114414.
      Citations: 5     Fields:    Translation:AnimalsCells
    12. Antony C, George SS, Blum J, Somers P, Thorsheim CL, Wu-Corts DJ, Ai Y, Gao L, Lv K, Tan K, Wilusz JE, Ganley ARD, Pimkin M, Paralkar VR, Tremblay MG, Moss T. Control of ribosomal RNA synthesis by hematopoietic transcription factors. Mol Cell. 2022 10 20; 82(20):3826-3839.e9. PMID: 36113481; PMCID: PMC9588704.
      Citations:    
    13. Ai Y, Liang D, Wilusz JE. CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Res. 2022 Jun 24; 50(11):e65. PMID: 35244715; PMCID: PMC9226543.
      Citations: 3     Fields:    Translation:AnimalsCells
    14. Yang L, Wilusz JE, Chen LL. Biogenesis and Regulatory Roles of Circular RNAs. Annu Rev Cell Dev Biol. 2022 10 06; 38:263-289. PMID: 35609906; PMCID: PMC10119891.
      Citations:    Fields:    
    15. Cable J, Heard E, Hirose T, Prasanth KV, Chen LL, Henninger JE, Quinodoz SA, Spector DL, Diermeier SD, Porman AM, Kumar D, Feinberg MW, Shen X, Unfried JP, Johnson R, Chen CK, Wilusz JE, Lempradl A, McGeary SE, Wahba L, Pyle AM, Hargrove AE, Simon MD, Marcia M, Chang HY, Jaffrey SR, Contreras LM, Chen Q, Shi J, Mendell JT, He L, Song E, Rinn JL, Lalwani MK, Kalem MC, Chuong EB, Maquat LE, Liu X, Przanowska RK. Noncoding RNAs: biology and applications-a Keystone Symposia report. Ann N Y Acad Sci. 2021 12; 1506(1):118-141. PMID: 34791665; PMCID: PMC9808899.
      Citations:    Fields:    Translation:HumansAnimalsCells
    16. Chen LL, Wilusz JE, Guest editors. Methods for circular RNAs. Methods. 2021 12; 196:1-2. PMID: 34601050.
      Citations:    Fields:    
    17. Liang D, Tatomer DC, Wilusz JE. Use of circular RNAs as markers of readthrough transcription to identify factors regulating cleavage/polyadenylation events. Methods. 2021 12; 196:121-128. PMID: 33882363; PMCID: PMC8522170.
      Citations:    Fields:    Translation:Cells
    18. Dodbele S, Mutlu N, Wilusz JE. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep. 2021 03 03; 22(3):e52072. PMID: 33629517; PMCID: PMC7926241.
      Citations: 12     Fields:    Translation:Cells
    19. Meganck RM, Liu J, Hale AE, Simon KE, Fanous MM, Vincent HA, Wilusz JE, Moorman NJ, Marzluff WF, Asokan A. Engineering highly efficient backsplicing and translation of synthetic circRNAs. Mol Ther Nucleic Acids. 2021 Mar 05; 23:821-834. PMID: 33614232; PMCID: PMC7868716.
      Citations: 10     
    20. Tatomer DC, Liang D, Wilusz JE. RNAi Screening to Identify Factors That Control Circular RNA Localization. Methods Mol Biol. 2021; 2209:321-332. PMID: 33201478.
      Citations: 1     Fields:    Translation:AnimalsCells
    21. He C, Bozler J, Janssen KA, Wilusz JE, Garcia BA, Schorn AJ, Bonasio R. TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nat Struct Mol Biol. 2021 01; 28(1):62-70. PMID: 33230319; PMCID: PMC7855721.
      Citations: 14     Fields:    Translation:AnimalsCells
    22. Tatomer DC, Wilusz JE, Mendoza-Figueroa MS. The Integrator Complex in Transcription and Development. Trends Biochem Sci. 2020 11; 45(11):923-934. PMID: 32800671; PMCID: PMC7572659.
      Citations: 8     Fields:    Translation:HumansAnimalsCells
    23. Dodbele S, Wilusz JE. Ending on a high note: Downstream ORFs enhance mRNA translational output. EMBO J. 2020 09 01; 39(17):e105959. PMID: 32744723; PMCID: PMC7459393.
      Citations: 1     Fields:    Translation:HumansAnimals
    24. Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, Tang Y, Mallaredy V, Ibetti J, Grisanti L, Schumacher SM, Gao E, Rajan S, Wilusz JE, Goukassian D, Houser SR, Koch WJ, Kishore R. Author Correction: Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 2020 05 01; 11(1):2234. PMID: 32358483; PMCID: PMC7195447.
      Citations: 4     Fields:    
    25. Tatomer DC, Wilusz JE. Erratum: Attenuation of Eukaryotic Protein-Coding Gene Expression via Premature Transcription Termination. Cold Spring Harb Symp Quant Biol. 2020 Feb 27. PMID: 32108032.
      Citations:    Fields:    
    26. Tatomer DC, Wilusz JE. Attenuation of Eukaryotic Protein-Coding Gene Expression via Premature Transcription Termination. Cold Spring Harb Symp Quant Biol. 2019; 84:83-93. PMID: 32086332.
      Citations: 1     Fields:    
    27. Xiao MS, Ai Y, Wilusz JE. Biogenesis and Functions of Circular RNAs Come into Focus. Trends Cell Biol. 2020 03; 30(3):226-240. PMID: 31973951; PMCID: PMC7069689.
      Citations: 84     Fields:    Translation:HumansAnimals
    28. Elrod ND, Henriques T, Huang KL, Tatomer DC, Wilusz JE, Wagner EJ, Adelman K. The Integrator Complex Attenuates Promoter-Proximal Transcription at Protein-Coding Genes. Mol Cell. 2019 12 05; 76(5):738-752.e7. PMID: 31809743; PMCID: PMC6952639.
      Citations: 44     Fields:    Translation:AnimalsCells
    29. Fujiwara R, Damodaren N, Wilusz JE, Murakami K. The capping enzyme facilitates promoter escape and assembly of a follow-on preinitiation complex for reinitiation. Proc Natl Acad Sci U S A. 2019 11 05; 116(45):22573-22582. PMID: 31591205; PMCID: PMC6842614.
      Citations: 5     Fields:    Translation:AnimalsCells
    30. Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, Tang Y, Mallaredy V, Ibetti J, Grisanti L, Schumacher SM, Gao E, Rajan S, Wilusz JE, Goukassian D, Houser SR, Koch WJ, Kishore R. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 2019 09 20; 10(1):4317. PMID: 31541092; PMCID: PMC6754461.
      Citations: 120     Fields:    Translation:HumansAnimalsCells
    31. Xiao MS, Wilusz JE. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3' ends. Nucleic Acids Res. 2019 09 19; 47(16):8755-8769. PMID: 31269210; PMCID: PMC6895279.
      Citations: 43     Fields:    Translation:HumansCells
    32. Tatomer DC, Elrod ND, Liang D, Xiao MS, Jiang JZ, Jonathan M, Huang KL, Wagner EJ, Cherry S, Wilusz JE. The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev. 2019 11 01; 33(21-22):1525-1538. PMID: 31530651; PMCID: PMC6824465.
      Citations: 37     Fields:    Translation:AnimalsCells
    33. Kearse MG, Goldman DH, Choi J, Nwaezeapu C, Liang D, Green KM, Goldstrohm AC, Todd PK, Green R, Wilusz JE. Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Genes Dev. 2019 07 01; 33(13-14):871-885. PMID: 31171704; PMCID: PMC6601509.
      Citations: 22     Fields:    Translation:HumansCells
    34. Wilusz JE. Circle the Wagons: Circular RNAs Control Innate Immunity. Cell. 2019 05 02; 177(4):797-799. PMID: 31051101; PMCID: PMC7112311.
      Citations: 11     Fields:    Translation:Cells
    35. Meganck RM, Borchardt EK, Castellanos Rivera RM, Scalabrino ML, Wilusz JE, Marzluff WF, Asokan A. Tissue-Dependent Expression and Translation of Circular RNAs with Recombinant AAV Vectors In?Vivo. Mol Ther Nucleic Acids. 2018 Dec 07; 13:89-98. PMID: 30245471; PMCID: PMC6154398.
      Citations: 46     
    36. Huang C, Liang D, Tatomer DC, Wilusz JE. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018 05 01; 32(9-10):639-644. PMID: 29773557; PMCID: PMC6004072.
      Citations: 113     Fields:    Translation:HumansAnimalsCells
    37. Wilusz JE. A 360? view of circular RNAs: From biogenesis to functions. Wiley Interdiscip Rev RNA. 2018 07; 9(4):e1478. PMID: 29655315; PMCID: PMC6002912.
      Citations: 171     Fields:    Translation:HumansAnimalsCells
    38. Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen LL, Cherry S, Wilusz JE. The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol Cell. 2017 Dec 07; 68(5):940-954.e3. PMID: 29174924; PMCID: PMC5728686.
      Citations: 159     Fields:    Translation:AnimalsCells
    39. Kearse MG, Wilusz JE. Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev. 2017 09 01; 31(17):1717-1731. PMID: 28982758; PMCID: PMC5666671.
      Citations: 120     Fields:    Translation:AnimalsCells
    40. Chen YG, Kim MV, Chen X, Batista PJ, Aoyama S, Wilusz JE, Iwasaki A, Chang HY. Sensing Self and Foreign Circular RNAs by Intron Identity. Mol Cell. 2017 Jul 20; 67(2):228-238.e5. PMID: 28625551; PMCID: PMC5610545.
      Citations: 165     Fields:    Translation:HumansAnimalsCells
    41. Tatomer DC, Wilusz JE. An Unchartered Journey for Ribosomes: Circumnavigating Circular RNAs to Produce Proteins. Mol Cell. 2017 Apr 06; 66(1):1-2. PMID: 28388436.
      Citations: 28     Fields:    Translation:HumansCells
    42. Tatomer DC, Liang D, Wilusz JE. Inducible Expression of Eukaryotic Circular RNAs from Plasmids. Methods Mol Biol. 2017; 1648:143-154. PMID: 28766295.
      Citations: 19     Fields:    Translation:AnimalsCells
    43. He C, Sidoli S, Warneford-Thomson R, Tatomer DC, Wilusz JE, Garcia BA, Bonasio R. High-Resolution Mapping of RNA-Binding Regions in the Nuclear Proteome of Embryonic Stem Cells. Mol Cell. 2016 10 20; 64(2):416-430. PMID: 27768875; PMCID: PMC5222606.
      Citations: 100     Fields:    Translation:HumansAnimalsCells
    44. Wilusz JE. Circular RNAs: Unexpected outputs of many protein-coding genes. RNA Biol. 2017 08 03; 14(8):1007-1017. PMID: 27571848; PMCID: PMC5680674.
      Citations: 53     Fields:    Translation:HumansAnimalsCells
    45. Molleston JM, Sabin LR, Moy RH, Menghani SV, Rausch K, Gordesky-Gold B, Hopkins KC, Zhou R, Jensen TH, Wilusz JE, Cherry S. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev. 2016 07 15; 30(14):1658-70. PMID: 27474443; PMCID: PMC4973295.
      Citations: 25     Fields:    Translation:HumansAnimalsCells
    46. Wilusz JE, Miyoshi T, Liu Y, Moran JV, Doucet AJ. A 3' Poly(A) Tract Is Required for LINE-1 Retrotransposition. Mol Cell. 2015 Dec 03; 60(5):728-741. PMID: 26585388; PMCID: PMC4671821.
      Citations: 58     Fields:    Translation:HumansCells
    47. Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015 Oct 15; 29(20):2168-82. PMID: 26450910; PMCID: PMC4617980.
      Citations: 205     Fields:    Translation:HumansAnimalsCells
    48. Wilusz JE. Removing roadblocks to deep sequencing of modified RNAs. Nat Methods. 2015 Sep; 12(9):821-2. PMID: 26317237; PMCID: PMC4568847.
      Citations: 17     Fields:    Translation:HumansCells
    49. Wilusz JE. Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochim Biophys Acta. 2016 Jan; 1859(1):128-38. PMID: 26073320; PMCID: PMC4676738.
      Citations: 94     Fields:    Translation:HumansCells
    50. Wilusz JE. Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements. 2015 May-Jun; 5(3):1-7. PMID: 26442181; PMCID: PMC4588227.
      Citations: 26     
    51. Wilusz JE. Controlling translation via modulation of tRNA levels. Wiley Interdiscip Rev RNA. 2015 Jul-Aug; 6(4):453-70. PMID: 25919480; PMCID: PMC4478206.
      Citations: 32     Fields:    Translation:HumansAnimalsCells
    52. Kuhn CD, Wilusz JE, Zheng Y, Beal PA, Joshua-Tor L. On-enzyme refolding permits small RNA and tRNA surveillance by the CCA-adding enzyme. Cell. 2015 Feb 12; 160(4):644-658. PMID: 25640237; PMCID: PMC4329729.
      Citations: 36     Fields:    Translation:HumansCells
    53. Wilusz JE, Wilusz J. Nonsense-mediated RNA decay: at the 'cutting edge' of regulated snoRNA production. Genes Dev. 2014 Nov 15; 28(22):2447-9. PMID: 25403177; PMCID: PMC4233238.
      Citations: 3     Fields:    Translation:HumansCells
    54. Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014 Oct 15; 28(20):2233-47. PMID: 25281217; PMCID: PMC4201285.
      Citations: 390     Fields:    Translation:HumansCells
    55. Wilusz JE, Sharp PA. Molecular biology. A circuitous route to noncoding RNA. Science. 2013 Apr 26; 340(6131):440-1. PMID: 23620042; PMCID: PMC4063205.
      Citations: 231     Fields:    Translation:HumansCells
    56. Wilusz JE, JnBaptiste CK, Lu LY, Kuhn CD, Joshua-Tor L, Sharp PA. A triple helix stabilizes the 3' ends of long noncoding RNAs that lack poly(A) tails. Genes Dev. 2012 Nov 01; 26(21):2392-407. PMID: 23073843; PMCID: PMC3489998.
      Citations: 202     Fields:    Translation:HumansCells
    57. Wilusz JE, Whipple JM, Phizicky EM, Sharp PA. tRNAs marked with CCACCA are targeted for degradation. Science. 2011 Nov 11; 334(6057):817-21. PMID: 22076379; PMCID: PMC3273417.
      Citations: 74     Fields:    Translation:HumansAnimalsCells
    58. Wilusz JE, Spector DL. An unexpected ending: noncanonical 3' end processing mechanisms. RNA. 2010 Feb; 16(2):259-66. PMID: 20007330; PMCID: PMC2811654.
      Citations: 38     Fields:    Translation:HumansAnimalsCells
    59. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009 Jul 01; 23(13):1494-504. PMID: 19571179; PMCID: PMC3152381.
      Citations: 1071     Fields:    Translation:AnimalsCells
    60. Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL. MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 2009 Mar; 19(3):347-59. PMID: 19106332; PMCID: PMC2661813.
      Citations: 317     Fields:    Translation:HumansAnimalsCells
    61. Wilusz JE, Freier SM, Spector DL. 3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell. 2008 Nov 28; 135(5):919-32. PMID: 19041754; PMCID: PMC2722846.
      Citations: 331     Fields:    Translation:HumansAnimalsCells
    62. Wilusz JE, Beemon KL. The negative regulator of splicing element of Rous sarcoma virus promotes polyadenylation. J Virol. 2006 Oct; 80(19):9634-40. PMID: 16973567; PMCID: PMC1617230.
      Citations: 16     Fields:    Translation:Cells
    63. Wilusz JE, Devanney SC, Caputi M. Chimeric peptide nucleic acid compounds modulate splicing of the bcl-x gene in vitro and in vivo. Nucleic Acids Res. 2005; 33(20):6547-54. PMID: 16299354; PMCID: PMC1289079.
      Citations: 10     Fields:    Translation:HumansCells
    WILUSZ's Networks
    Click the
    Explore
    buttons for more information and interactive visualizations!
    Concepts (222)
    Explore
    _
    Co-Authors (2)
    Explore
    _
    Similar People (60)
    Explore
    _
    Same Department Expand Description
    Explore
    _