Connection

TIMOTHY PALZKILL to beta-Lactamases

This is a "connection" page, showing publications TIMOTHY PALZKILL has written about beta-Lactamases.
Connection Strength

22.550
  1. Network of epistatic interactions in an enzyme active site revealed by large-scale deep mutational scanning. Proc Natl Acad Sci U S A. 2024 Mar 19; 121(12):e2313513121.
    View in: PubMed
    Score: 0.745
  2. Mutagenesis and structural analysis reveal the CTX-M ?-lactamase active site is optimized for cephalosporin catalysis and drug resistance. J Biol Chem. 2023 05; 299(5):104630.
    View in: PubMed
    Score: 0.696
  3. Mapping the determinants of catalysis and substrate specificity of the antibiotic resistance enzyme CTX-M ?-lactamase. Commun Biol. 2023 01 12; 6(1):35.
    View in: PubMed
    Score: 0.687
  4. Evaluation of Tebipenem Hydrolysis by ?-Lactamases Prevalent in Complicated Urinary Tract Infections. Antimicrob Agents Chemother. 2022 05 17; 66(5):e0239621.
    View in: PubMed
    Score: 0.655
  5. Deep Sequencing of a Systematic Peptide Library Reveals Conformationally-Constrained Protein Interface Peptides that Disrupt a Protein-Protein Interaction. Chembiochem. 2022 02 04; 23(3):e202100504.
    View in: PubMed
    Score: 0.637
  6. Local interactions with the Glu166 base and the conformation of an active site loop play key roles in carbapenem hydrolysis by the KPC-2 ?-lactamase. J Biol Chem. 2021 Jan-Jun; 296:100799.
    View in: PubMed
    Score: 0.613
  7. Mechanistic Basis of OXA-48-like ?-Lactamases' Hydrolysis of Carbapenems. ACS Infect Dis. 2021 02 12; 7(2):445-460.
    View in: PubMed
    Score: 0.600
  8. KPC-2 ?-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. J Biol Chem. 2021 Jan-Jun; 296:100155.
    View in: PubMed
    Score: 0.595
  9. A drug-resistant ?-lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency. J Biol Chem. 2020 12 25; 295(52):18239-18255.
    View in: PubMed
    Score: 0.590
  10. Antagonism between substitutions in ?-lactamase explains a path not taken in the evolution of bacterial drug resistance. J Biol Chem. 2020 05 22; 295(21):7376-7390.
    View in: PubMed
    Score: 0.568
  11. Development and Evaluation of a Novel Protein-Based Assay for Specific Detection of KPC ?-Lactamases from Klebsiella pneumoniae Clinical Isolates. mSphere. 2020 01 08; 5(1).
    View in: PubMed
    Score: 0.558
  12. Differential active site requirements for NDM-1 ?-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics. Nat Commun. 2018 10 30; 9(1):4524.
    View in: PubMed
    Score: 0.514
  13. Synergistic effects of functionally distinct substitutions in ?-lactamase variants shed light on the evolution of bacterial drug resistance. J Biol Chem. 2018 11 16; 293(46):17971-17984.
    View in: PubMed
    Score: 0.511
  14. The Drug-Resistant Variant P167S Expands the Substrate Profile of CTX-M ?-Lactamases for Oxyimino-Cephalosporin Antibiotics by Enlarging the Active Site upon Acylation. Biochemistry. 2017 07 11; 56(27):3443-3453.
    View in: PubMed
    Score: 0.468
  15. Systematic substitutions at BLIP position 50 result in changes in binding specificity for class A ?-lactamases. BMC Biochem. 2017 03 06; 18(1):2.
    View in: PubMed
    Score: 0.458
  16. BLIP-II Employs Differential Hotspot Residues To Bind Structurally Similar Staphylococcus aureus PBP2a and Class A ?-Lactamases. Biochemistry. 2017 02 28; 56(8):1075-1084.
    View in: PubMed
    Score: 0.457
  17. Engineering Specificity from Broad to Narrow: Design of a ?-Lactamase Inhibitory Protein (BLIP) Variant That Exclusively Binds and Detects KPC ?-Lactamase. ACS Infect Dis. 2016 12 09; 2(12):969-979.
    View in: PubMed
    Score: 0.447
  18. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-?-Lactamase is Fragile to Mutations. Sci Rep. 2016 09 12; 6:33195.
    View in: PubMed
    Score: 0.443
  19. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine ?-Lactamases by Relieving Steric Strain. Biochemistry. 2016 05 03; 55(17):2479-90.
    View in: PubMed
    Score: 0.431
  20. Characterization of the global stabilizing substitution A77V and its role in the evolution of CTX-M ?-lactamases. Antimicrob Agents Chemother. 2015 Nov; 59(11):6741-8.
    View in: PubMed
    Score: 0.411
  21. Natural Variants of the KPC-2 Carbapenemase have Evolved Increased Catalytic Efficiency for Ceftazidime Hydrolysis at the Cost of Enzyme Stability. PLoS Pathog. 2015 Jun; 11(6):e1004949.
    View in: PubMed
    Score: 0.405
  22. How structural and physicochemical determinants shape sequence constraints in a functional enzyme. PLoS One. 2015; 10(2):e0118684.
    View in: PubMed
    Score: 0.398
  23. A triple mutant in the O-loop of TEM-1 ?-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis. J Biol Chem. 2015 Apr 17; 290(16):10382-94.
    View in: PubMed
    Score: 0.398
  24. Role of ?-lactamase residues in a common interface for binding the structurally unrelated inhibitory proteins BLIP and BLIP-II. Protein Sci. 2014 Sep; 23(9):1235-46.
    View in: PubMed
    Score: 0.380
  25. Metallo-?-lactamase structure and function. Ann N Y Acad Sci. 2013 Jan; 1277:91-104.
    View in: PubMed
    Score: 0.340
  26. Deep sequencing of systematic combinatorial libraries reveals ?-lactamase sequence constraints at high resolution. J Mol Biol. 2012 Dec 07; 424(3-4):150-67.
    View in: PubMed
    Score: 0.337
  27. Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-?-lactamase active site. Antimicrob Agents Chemother. 2012 Nov; 56(11):5667-77.
    View in: PubMed
    Score: 0.334
  28. Analysis of the functional contributions of Asn233 in metallo-?-lactamase IMP-1. Antimicrob Agents Chemother. 2011 Dec; 55(12):5696-702.
    View in: PubMed
    Score: 0.313
  29. Use of periplasmic target protein capture for phage display engineering of tight-binding protein-protein interactions. Protein Eng Des Sel. 2011 Nov; 24(11):819-28.
    View in: PubMed
    Score: 0.313
  30. Analysis of the binding forces driving the tight interactions between beta-lactamase inhibitory protein-II (BLIP-II) and class A beta-lactamases. J Biol Chem. 2011 Sep 16; 286(37):32723-35.
    View in: PubMed
    Score: 0.310
  31. Multiple global suppressors of protein stability defects facilitate the evolution of extended-spectrum TEM ?-lactamases. J Mol Biol. 2010 Dec 17; 404(5):832-46.
    View in: PubMed
    Score: 0.294
  32. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis. J Biol Chem. 2009 Nov 27; 284(48):33703-12.
    View in: PubMed
    Score: 0.274
  33. Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM-1 beta-lactamase. Protein Sci. 2009 Oct; 18(10):2080-9.
    View in: PubMed
    Score: 0.274
  34. Genetic and structural characterization of an L201P global suppressor substitution in TEM-1 beta-lactamase. J Mol Biol. 2008 Dec 05; 384(1):151-64.
    View in: PubMed
    Score: 0.255
  35. A fitness cost associated with the antibiotic resistance enzyme SME-1 beta-lactamase. Genetics. 2007 Aug; 176(4):2381-92.
    View in: PubMed
    Score: 0.233
  36. Amino acid residues that contribute to substrate specificity of class A beta-lactamase SME-1. Antimicrob Agents Chemother. 2005 Aug; 49(8):3421-7.
    View in: PubMed
    Score: 0.205
  37. Analysis of the context dependent sequence requirements of active site residues in the metallo-beta-lactamase IMP-1. J Mol Biol. 2004 Nov 26; 344(3):653-63.
    View in: PubMed
    Score: 0.196
  38. Dissecting the protein-protein interface between beta-lactamase inhibitory protein and class A beta-lactamases. J Biol Chem. 2004 Oct 08; 279(41):42860-6.
    View in: PubMed
    Score: 0.191
  39. The mechanism of ceftazidime and cefiderocol hydrolysis by D179Y variants of KPC carbapenemases is similar and involves the formation of a long-lived covalent intermediate. Antimicrob Agents Chemother. 2024 03 06; 68(3):e0110823.
    View in: PubMed
    Score: 0.185
  40. Evaluation of penicillin-based inhibitors of the class A and B beta-lactamases from Bacillus anthracis. Biochem Biophys Res Commun. 2004 Jan 16; 313(3):541-5.
    View in: PubMed
    Score: 0.184
  41. Exploiting the Carboxylate-Binding Pocket of ?-Lactamase Enzymes Using a Focused DNA-Encoded Chemical Library. J Med Chem. 2024 01 11; 67(1):620-642.
    View in: PubMed
    Score: 0.183
  42. Klebsiella pneumoniae carbapenemase variant 44 acquires ceftazidime-avibactam resistance by altering the conformation of active-site loops. J Biol Chem. 2024 01; 300(1):105493.
    View in: PubMed
    Score: 0.182
  43. Determinants of binding affinity and specificity for the interaction of TEM-1 and SME-1 beta-lactamase with beta-lactamase inhibitory protein. J Biol Chem. 2003 Nov 14; 278(46):45706-12.
    View in: PubMed
    Score: 0.179
  44. Biochemical characterization of beta-lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob Agents Chemother. 2003 Jun; 47(6):2040-2.
    View in: PubMed
    Score: 0.176
  45. Amino acid sequence requirements at residues 69 and 238 for the SME-1 beta-lactamase to confer resistance to beta-lactam antibiotics. Antimicrob Agents Chemother. 2003 Mar; 47(3):1062-7.
    View in: PubMed
    Score: 0.173
  46. An active site loop toggles between conformations to control antibiotic hydrolysis and inhibition potency for CTX-M ?-lactamase drug-resistance enzymes. Nat Commun. 2022 11 07; 13(1):6726.
    View in: PubMed
    Score: 0.170
  47. Molecular analysis of beta-lactamase structure and function. Int J Med Microbiol. 2002 Jul; 292(2):127-37.
    View in: PubMed
    Score: 0.166
  48. Consensus on ?-Lactamase Nomenclature. Antimicrob Agents Chemother. 2022 04 19; 66(4):e0033322.
    View in: PubMed
    Score: 0.163
  49. Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection. Protein Sci. 2001 Dec; 10(12):2556-65.
    View in: PubMed
    Score: 0.159
  50. Unique Diacidic Fragments Inhibit the OXA-48 Carbapenemase and Enhance the Killing of Escherichia coli Producing OXA-48. ACS Infect Dis. 2021 12 10; 7(12):3345-3354.
    View in: PubMed
    Score: 0.159
  51. QM/MM modeling of class A ?-lactamases reveals distinct acylation pathways for ampicillin and cefalexin. Org Biomol Chem. 2021 Nov 03; 19(42):9182-9189.
    View in: PubMed
    Score: 0.158
  52. Amino acid sequence determinants of extended spectrum cephalosporin hydrolysis by the class C P99 beta-lactamase. J Biol Chem. 2001 Dec 07; 276(49):46568-74.
    View in: PubMed
    Score: 0.157
  53. Mapping Protein-Protein Interaction Interface Peptides with Jun-Fos Assisted Phage Display and Deep Sequencing. ACS Synth Biol. 2020 07 17; 9(7):1882-1896.
    View in: PubMed
    Score: 0.144
  54. Identifying Oxacillinase-48 Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries. ACS Infect Dis. 2020 05 08; 6(5):1214-1227.
    View in: PubMed
    Score: 0.142
  55. A Standard Numbering Scheme for Class C ?-Lactamases. Antimicrob Agents Chemother. 2020 02 21; 64(3).
    View in: PubMed
    Score: 0.141
  56. Susceptibility of beta-lactamase to core amino acid substitutions. Protein Eng. 1999 Sep; 12(9):761-9.
    View in: PubMed
    Score: 0.136
  57. Identification of residues in beta-lactamase critical for binding beta-lactamase inhibitory protein. J Biol Chem. 1999 Mar 12; 274(11):6963-71.
    View in: PubMed
    Score: 0.132
  58. The role of residue 238 of TEM-1 beta-lactamase in the hydrolysis of extended-spectrum antibiotics. J Biol Chem. 1998 Oct 09; 273(41):26603-9.
    View in: PubMed
    Score: 0.128
  59. beta-Lactamases: protein evolution in real time. Trends Microbiol. 1998 Aug; 6(8):323-7.
    View in: PubMed
    Score: 0.126
  60. Cephalosporin substrate specificity determinants of TEM-1 beta-lactamase. J Biol Chem. 1997 Nov 14; 272(46):29144-50.
    View in: PubMed
    Score: 0.120
  61. A natural polymorphism in beta-lactamase is a global suppressor. Proc Natl Acad Sci U S A. 1997 Aug 05; 94(16):8801-6.
    View in: PubMed
    Score: 0.118
  62. Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime. J Biol Chem. 1996 Sep 13; 271(37):22538-45.
    View in: PubMed
    Score: 0.111
  63. Amino acid sequence determinants of beta-lactamase structure and activity. J Mol Biol. 1996 May 17; 258(4):688-703.
    View in: PubMed
    Score: 0.108
  64. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. J Bacteriol. 1996 Apr; 178(7):1821-8.
    View in: PubMed
    Score: 0.107
  65. Structural Basis for Different Substrate Profiles of Two Closely Related Class D ?-Lactamases and Their Inhibition by Halogens. Biochemistry. 2015 Jun 02; 54(21):3370-80.
    View in: PubMed
    Score: 0.101
  66. New variant of TEM-10 beta-lactamase gene produced by a clinical isolate of proteus mirabilis. Antimicrob Agents Chemother. 1995 May; 39(5):1199-200.
    View in: PubMed
    Score: 0.101
  67. Molecular basis for the catalytic specificity of the CTX-M extended-spectrum ?-lactamases. Biochemistry. 2015 Jan 20; 54(2):447-57.
    View in: PubMed
    Score: 0.098
  68. Effect of threonine-to-methionine substitution at position 265 on structure and function of TEM-1 beta-lactamase. Antimicrob Agents Chemother. 1994 Oct; 38(10):2266-9.
    View in: PubMed
    Score: 0.097
  69. Characterization of TEM-1 beta-lactamase mutants from positions 238 to 241 with increased catalytic efficiency for ceftazidime. J Biol Chem. 1994 Sep 23; 269(38):23444-50.
    View in: PubMed
    Score: 0.097
  70. Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase. Mol Microbiol. 1994 Apr; 12(2):217-29.
    View in: PubMed
    Score: 0.093
  71. Selection of functional signal peptide cleavage sites from a library of random sequences. J Bacteriol. 1994 Feb; 176(3):563-8.
    View in: PubMed
    Score: 0.092
  72. Identification of the ?-lactamase inhibitor protein-II (BLIP-II) interface residues essential for binding affinity and specificity for class A ?-lactamases. J Biol Chem. 2013 Jun 14; 288(24):17156-66.
    View in: PubMed
    Score: 0.088
  73. BLIP-II is a highly potent inhibitor of Klebsiella pneumoniae carbapenemase (KPC-2). Antimicrob Agents Chemother. 2013 Jul; 57(7):3398-401.
    View in: PubMed
    Score: 0.087
  74. Probing beta-lactamase structure and function using random replacement mutagenesis. Proteins. 1992 Sep; 14(1):29-44.
    View in: PubMed
    Score: 0.084
  75. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase. J Bacteriol. 1992 Aug; 174(16):5237-43.
    View in: PubMed
    Score: 0.083
  76. Identification of a ?-lactamase inhibitory protein variant that is a potent inhibitor of Staphylococcus PC1 ?-lactamase. J Mol Biol. 2011 Mar 11; 406(5):730-44.
    View in: PubMed
    Score: 0.075
  77. Identification and characterization of beta-lactamase inhibitor protein-II (BLIP-II) interactions with beta-lactamases using phage display. Protein Eng Des Sel. 2010 Jun; 23(6):469-78.
    View in: PubMed
    Score: 0.071
  78. Fine mapping of the sequence requirements for binding of beta-lactamase inhibitory protein (BLIP) to TEM-1 beta-lactamase using a genetic screen for BLIP function. J Mol Biol. 2009 Jun 05; 389(2):401-12.
    View in: PubMed
    Score: 0.066
  79. Structural insight into the kinetics and DeltaCp of interactions between TEM-1 beta-lactamase and beta-lactamase inhibitory protein (BLIP). J Biol Chem. 2009 Jan 02; 284(1):595-609.
    View in: PubMed
    Score: 0.064
  80. Thermodynamic investigation of the role of contact residues of beta-lactamase-inhibitory protein for binding to TEM-1 beta-lactamase. J Biol Chem. 2007 Jun 15; 282(24):17676-84.
    View in: PubMed
    Score: 0.058
  81. Experimental evolution of gene duplicates in a bacterial plasmid model. J Mol Evol. 2007 Feb; 64(2):215-22.
    View in: PubMed
    Score: 0.057
  82. Copy number flexibility facilitates heteroresistance to increasing antibiotic pressure and threatens the beta-lactam pipeline. Nat Commun. 2025 Jul 01; 16(1):5721.
    View in: PubMed
    Score: 0.051
  83. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99. Biochemistry. 2005 May 24; 44(20):7543-52.
    View in: PubMed
    Score: 0.051
  84. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases. Spectrochim Acta A Mol Biomol Spectrosc. 2004 May; 60(6):1279-89.
    View in: PubMed
    Score: 0.047
  85. A broad-spectrum peptide inhibitor of beta-lactamase identified using phage display and peptide arrays. Protein Eng. 2003 Nov; 16(11):853-60.
    View in: PubMed
    Score: 0.045
  86. An analysis of why highly similar enzymes evolve differently. Genetics. 2003 Feb; 163(2):457-66.
    View in: PubMed
    Score: 0.043
  87. Unveiling the structural features that regulate carbapenem deacylation in KPC-2 through QM/MM and interpretable machine learning. Phys Chem Chem Phys. 2023 Jan 04; 25(2):1349-1362.
    View in: PubMed
    Score: 0.043
  88. Slow Protein Dynamics Elicits New Enzymatic Functions by Means of Epistatic Interactions. Mol Biol Evol. 2022 10 07; 39(10).
    View in: PubMed
    Score: 0.042
  89. Binding properties of a peptide derived from beta-lactamase inhibitory protein. Antimicrob Agents Chemother. 2001 Dec; 45(12):3279-86.
    View in: PubMed
    Score: 0.040
  90. Protein minimization by random fragmentation and selection. Protein Eng. 2001 Jul; 14(7):487-92.
    View in: PubMed
    Score: 0.039
  91. A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci U S A. 2001 Jan 02; 98(1):283-8.
    View in: PubMed
    Score: 0.037
  92. Use of the arabinose p(bad) promoter for tightly regulated display of proteins on bacteriophage. Gene. 2000 Jun 27; 251(2):187-97.
    View in: PubMed
    Score: 0.036
  93. Structure-function analysis of alpha-helix H4 using PSE-4 as a model enzyme representative of class A beta-lactamases. Protein Eng. 2000 Apr; 13(4):267-74.
    View in: PubMed
    Score: 0.035
  94. Contributions of aspartate 49 and phenylalanine 142 residues of a tight binding inhibitory protein of beta-lactamases. J Biol Chem. 1999 Jan 22; 274(4):2394-400.
    View in: PubMed
    Score: 0.033
  95. Display of functional beta-lactamase inhibitory protein on the surface of M13 bacteriophage. Antimicrob Agents Chemother. 1998 Nov; 42(11):2893-7.
    View in: PubMed
    Score: 0.032
  96. Roles of amino acids 161 to 179 in the PSE-4 omega loop in substrate specificity and in resistance to ceftazidime. Antimicrob Agents Chemother. 1998 Oct; 42(10):2576-83.
    View in: PubMed
    Score: 0.032
  97. The rate-limiting step in the folding of the cis-Pro167Thr mutant of TEM-1 beta-lactamase is the trans to cis isomerization of a non-proline peptide bond. Proteins. 1996 May; 25(1):104-11.
    View in: PubMed
    Score: 0.027
  98. Outbreak of ceftazidime resistance due to a novel extended-spectrum beta-lactamase in isolates from cancer patients. Antimicrob Agents Chemother. 1992 Sep; 36(9):1991-6.
    View in: PubMed
    Score: 0.021
  99. 2-Substituted 4,5-dihydrothiazole-4-carboxylic acids are novel inhibitors of metallo-?-lactamases. Bioorg Med Chem Lett. 2012 Oct 01; 22(19):6229-32.
    View in: PubMed
    Score: 0.021
  100. Penicillin-derived inhibitors that simultaneously target both metallo- and serine-beta-lactamases. Bioorg Med Chem Lett. 2004 Mar 08; 14(5):1299-304.
    View in: PubMed
    Score: 0.012
  101. Characterization of a PSE-4 mutant with different properties in relation to penicillanic acid sulfones: importance of residues 216 to 218 in class A beta-lactamases. Antimicrob Agents Chemother. 1998 Sep; 42(9):2319-25.
    View in: PubMed
    Score: 0.008
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.