Connection

TIMOTHY PALZKILL to Protein Conformation

This is a "connection" page, showing publications TIMOTHY PALZKILL has written about Protein Conformation.
Connection Strength

1.072
  1. Local interactions with the Glu166 base and the conformation of an active site loop play key roles in carbapenem hydrolysis by the KPC-2 ?-lactamase. J Biol Chem. 2021 Jan-Jun; 296:100799.
    View in: PubMed
    Score: 0.159
  2. A drug-resistant ?-lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency. J Biol Chem. 2020 12 25; 295(52):18239-18255.
    View in: PubMed
    Score: 0.153
  3. Synergistic effects of functionally distinct substitutions in ?-lactamase variants shed light on the evolution of bacterial drug resistance. J Biol Chem. 2018 11 16; 293(46):17971-17984.
    View in: PubMed
    Score: 0.133
  4. The Drug-Resistant Variant P167S Expands the Substrate Profile of CTX-M ?-Lactamases for Oxyimino-Cephalosporin Antibiotics by Enlarging the Active Site upon Acylation. Biochemistry. 2017 07 11; 56(27):3443-3453.
    View in: PubMed
    Score: 0.122
  5. How structural and physicochemical determinants shape sequence constraints in a functional enzyme. PLoS One. 2015; 10(2):e0118684.
    View in: PubMed
    Score: 0.104
  6. Role of ?-lactamase residues in a common interface for binding the structurally unrelated inhibitory proteins BLIP and BLIP-II. Protein Sci. 2014 Sep; 23(9):1235-46.
    View in: PubMed
    Score: 0.099
  7. Determination of the amino acid sequence requirements for catalysis by the highly proficient orotidine monophosphate decarboxylase. Protein Sci. 2011 Nov; 20(11):1891-906.
    View in: PubMed
    Score: 0.082
  8. Determinants of binding affinity and specificity for the interaction of TEM-1 and SME-1 beta-lactamase with beta-lactamase inhibitory protein. J Biol Chem. 2003 Nov 14; 278(46):45706-12.
    View in: PubMed
    Score: 0.047
  9. Identification of residues in beta-lactamase critical for binding beta-lactamase inhibitory protein. J Biol Chem. 1999 Mar 12; 274(11):6963-71.
    View in: PubMed
    Score: 0.034
  10. Amino acid sequence determinants of beta-lactamase structure and activity. J Mol Biol. 1996 May 17; 258(4):688-703.
    View in: PubMed
    Score: 0.028
  11. Structural Basis for Different Substrate Profiles of Two Closely Related Class D ?-Lactamases and Their Inhibition by Halogens. Biochemistry. 2015 Jun 02; 54(21):3370-80.
    View in: PubMed
    Score: 0.026
  12. Structural basis of substrate specificity and protease inhibition in Norwalk virus. J Virol. 2013 Apr; 87(8):4281-92.
    View in: PubMed
    Score: 0.022
  13. Probing beta-lactamase structure and function using random replacement mutagenesis. Proteins. 1992 Sep; 14(1):29-44.
    View in: PubMed
    Score: 0.022
  14. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase. J Bacteriol. 1992 Aug; 174(16):5237-43.
    View in: PubMed
    Score: 0.022
  15. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases. Spectrochim Acta A Mol Biomol Spectrosc. 2004 May; 60(6):1279-89.
    View in: PubMed
    Score: 0.012
  16. The rate-limiting step in the folding of the cis-Pro167Thr mutant of TEM-1 beta-lactamase is the trans to cis isomerization of a non-proline peptide bond. Proteins. 1996 May; 25(1):104-11.
    View in: PubMed
    Score: 0.007
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.