Connection

TIMOTHY PALZKILL to Hydrolysis

This is a "connection" page, showing publications TIMOTHY PALZKILL has written about Hydrolysis.
Connection Strength

2.195
  1. The mechanism of ceftazidime and cefiderocol hydrolysis by D179Y variants of KPC carbapenemases is similar and involves the formation of a long-lived covalent intermediate. Antimicrob Agents Chemother. 2024 03 06; 68(3):e0110823.
    View in: PubMed
    Score: 0.215
  2. An active site loop toggles between conformations to control antibiotic hydrolysis and inhibition potency for CTX-M ?-lactamase drug-resistance enzymes. Nat Commun. 2022 11 07; 13(1):6726.
    View in: PubMed
    Score: 0.198
  3. Evaluation of Tebipenem Hydrolysis by ?-Lactamases Prevalent in Complicated Urinary Tract Infections. Antimicrob Agents Chemother. 2022 05 17; 66(5):e0239621.
    View in: PubMed
    Score: 0.191
  4. Local interactions with the Glu166 base and the conformation of an active site loop play key roles in carbapenem hydrolysis by the KPC-2 ?-lactamase. J Biol Chem. 2021 Jan-Jun; 296:100799.
    View in: PubMed
    Score: 0.178
  5. Mechanistic Basis of OXA-48-like ?-Lactamases' Hydrolysis of Carbapenems. ACS Infect Dis. 2021 02 12; 7(2):445-460.
    View in: PubMed
    Score: 0.175
  6. Synergistic effects of functionally distinct substitutions in ?-lactamase variants shed light on the evolution of bacterial drug resistance. J Biol Chem. 2018 11 16; 293(46):17971-17984.
    View in: PubMed
    Score: 0.149
  7. The Drug-Resistant Variant P167S Expands the Substrate Profile of CTX-M ?-Lactamases for Oxyimino-Cephalosporin Antibiotics by Enlarging the Active Site upon Acylation. Biochemistry. 2017 07 11; 56(27):3443-3453.
    View in: PubMed
    Score: 0.136
  8. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-?-Lactamase is Fragile to Mutations. Sci Rep. 2016 09 12; 6:33195.
    View in: PubMed
    Score: 0.129
  9. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine ?-Lactamases by Relieving Steric Strain. Biochemistry. 2016 05 03; 55(17):2479-90.
    View in: PubMed
    Score: 0.126
  10. Natural Variants of the KPC-2 Carbapenemase have Evolved Increased Catalytic Efficiency for Ceftazidime Hydrolysis at the Cost of Enzyme Stability. PLoS Pathog. 2015 Jun; 11(6):e1004949.
    View in: PubMed
    Score: 0.118
  11. Deep sequencing of systematic combinatorial libraries reveals ?-lactamase sequence constraints at high resolution. J Mol Biol. 2012 Dec 07; 424(3-4):150-67.
    View in: PubMed
    Score: 0.098
  12. Genetic and structural characterization of an L201P global suppressor substitution in TEM-1 beta-lactamase. J Mol Biol. 2008 Dec 05; 384(1):151-64.
    View in: PubMed
    Score: 0.074
  13. Evaluation of penicillin-based inhibitors of the class A and B beta-lactamases from Bacillus anthracis. Biochem Biophys Res Commun. 2004 Jan 16; 313(3):541-5.
    View in: PubMed
    Score: 0.054
  14. Determinants of binding affinity and specificity for the interaction of TEM-1 and SME-1 beta-lactamase with beta-lactamase inhibitory protein. J Biol Chem. 2003 Nov 14; 278(46):45706-12.
    View in: PubMed
    Score: 0.052
  15. Amino acid sequence requirements at residues 69 and 238 for the SME-1 beta-lactamase to confer resistance to beta-lactam antibiotics. Antimicrob Agents Chemother. 2003 Mar; 47(3):1062-7.
    View in: PubMed
    Score: 0.050
  16. Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection. Protein Sci. 2001 Dec; 10(12):2556-65.
    View in: PubMed
    Score: 0.046
  17. Amino acid sequence determinants of extended spectrum cephalosporin hydrolysis by the class C P99 beta-lactamase. J Biol Chem. 2001 Dec 07; 276(49):46568-74.
    View in: PubMed
    Score: 0.046
  18. The role of residue 238 of TEM-1 beta-lactamase in the hydrolysis of extended-spectrum antibiotics. J Biol Chem. 1998 Oct 09; 273(41):26603-9.
    View in: PubMed
    Score: 0.037
  19. Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime. J Biol Chem. 1996 Sep 13; 271(37):22538-45.
    View in: PubMed
    Score: 0.032
  20. Molecular basis for the catalytic specificity of the CTX-M extended-spectrum ?-lactamases. Biochemistry. 2015 Jan 20; 54(2):447-57.
    View in: PubMed
    Score: 0.029
  21. Crystallographic Analysis of Rotavirus NSP2-RNA Complex Reveals Specific Recognition of 5' GG Sequence for RTPase Activity. J Virol. 2012 Oct; 86(19):10547-57.
    View in: PubMed
    Score: 0.024
  22. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99. Biochemistry. 2005 May 24; 44(20):7543-52.
    View in: PubMed
    Score: 0.015
  23. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases. Spectrochim Acta A Mol Biomol Spectrosc. 2004 May; 60(6):1279-89.
    View in: PubMed
    Score: 0.014
  24. A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci U S A. 2001 Jan 02; 98(1):283-8.
    View in: PubMed
    Score: 0.011
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.