Connection

TIMOTHY PALZKILL to Binding Sites

This is a "connection" page, showing publications TIMOTHY PALZKILL has written about Binding Sites.
Connection Strength

0.913
  1. KPC-2 ?-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. J Biol Chem. 2021 Jan-Jun; 296:100155.
    View in: PubMed
    Score: 0.140
  2. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine ?-Lactamases by Relieving Steric Strain. Biochemistry. 2016 05 03; 55(17):2479-90.
    View in: PubMed
    Score: 0.102
  3. A high-throughput percentage-of-binding strategy to measure binding energies in DNA-protein interactions: application to genome-scale site discovery. Nucleic Acids Res. 2008 Sep; 36(15):4863-71.
    View in: PubMed
    Score: 0.059
  4. Amino acid residues that contribute to substrate specificity of class A beta-lactamase SME-1. Antimicrob Agents Chemother. 2005 Aug; 49(8):3421-7.
    View in: PubMed
    Score: 0.048
  5. Functional analysis of active site residues of the fosfomycin resistance enzyme FosA from Pseudomonas aeruginosa. J Biol Chem. 2005 May 06; 280(18):17786-91.
    View in: PubMed
    Score: 0.047
  6. Analysis of the context dependent sequence requirements of active site residues in the metallo-beta-lactamase IMP-1. J Mol Biol. 2004 Nov 26; 344(3):653-63.
    View in: PubMed
    Score: 0.046
  7. A broad-spectrum peptide inhibitor of beta-lactamase identified using phage display and peptide arrays. Protein Eng. 2003 Nov; 16(11):853-60.
    View in: PubMed
    Score: 0.043
  8. Determinants of binding affinity and specificity for the interaction of TEM-1 and SME-1 beta-lactamase with beta-lactamase inhibitory protein. J Biol Chem. 2003 Nov 14; 278(46):45706-12.
    View in: PubMed
    Score: 0.042
  9. Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection. Protein Sci. 2001 Dec; 10(12):2556-65.
    View in: PubMed
    Score: 0.038
  10. Amino acid sequence determinants of extended spectrum cephalosporin hydrolysis by the class C P99 beta-lactamase. J Biol Chem. 2001 Dec 07; 276(49):46568-74.
    View in: PubMed
    Score: 0.037
  11. Protein minimization by random fragmentation and selection. Protein Eng. 2001 Jul; 14(7):487-92.
    View in: PubMed
    Score: 0.036
  12. Design of potent beta-lactamase inhibitors by phage display of beta-lactamase inhibitory protein. J Biol Chem. 2000 May 19; 275(20):14964-8.
    View in: PubMed
    Score: 0.034
  13. Structural, Biochemical, and In Vivo Characterization of MtrR-Mediated Resistance to Innate Antimicrobials by the Human Pathogen Neisseria gonorrhoeae. J Bacteriol. 2019 10 15; 201(20).
    View in: PubMed
    Score: 0.032
  14. Cephalosporin substrate specificity determinants of TEM-1 beta-lactamase. J Biol Chem. 1997 Nov 14; 272(46):29144-50.
    View in: PubMed
    Score: 0.028
  15. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. J Bacteriol. 1996 Apr; 178(7):1821-8.
    View in: PubMed
    Score: 0.025
  16. PBP2a mutations causing high-level Ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 2014 Nov; 58(11):6668-74.
    View in: PubMed
    Score: 0.023
  17. Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase. Mol Microbiol. 1994 Apr; 12(2):217-29.
    View in: PubMed
    Score: 0.022
  18. Probing beta-lactamase structure and function using random replacement mutagenesis. Proteins. 1992 Sep; 14(1):29-44.
    View in: PubMed
    Score: 0.020
  19. Co-crystal structures of PKG I? (92-227) with cGMP and cAMP reveal the molecular details of cyclic-nucleotide binding. PLoS One. 2011 Apr 19; 6(4):e18413.
    View in: PubMed
    Score: 0.018
  20. Epitope mapping and use of epitope-specific antisera to characterize the VP5* binding site in rotavirus SA11 NSP4. Virology. 2008 Mar 30; 373(1):211-28.
    View in: PubMed
    Score: 0.014
  21. Thermodynamic investigation of the role of contact residues of beta-lactamase-inhibitory protein for binding to TEM-1 beta-lactamase. J Biol Chem. 2007 Jun 15; 282(24):17676-84.
    View in: PubMed
    Score: 0.014
  22. Using peptide arrays to define nuclear carrier binding sites on nucleoporins. Methods. 2006 Aug; 39(4):329-41.
    View in: PubMed
    Score: 0.013
  23. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99. Biochemistry. 2005 May 24; 44(20):7543-52.
    View in: PubMed
    Score: 0.012
  24. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases. Spectrochim Acta A Mol Biomol Spectrosc. 2004 May; 60(6):1279-89.
    View in: PubMed
    Score: 0.011
  25. Characterization of a PSE-4 mutant with different properties in relation to penicillanic acid sulfones: importance of residues 216 to 218 in class A beta-lactamases. Antimicrob Agents Chemother. 1998 Sep; 42(9):2319-25.
    View in: PubMed
    Score: 0.007
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.