MING HU to Microsomes, Liver
This is a "connection" page, showing publications MING HU has written about Microsomes, Liver.
Connection Strength
1.787
-
Use of glucuronidation fingerprinting to describe and predict mono- and dihydroxyflavone metabolism by recombinant UGT isoforms and human intestinal and liver microsomes. Mol Pharm. 2010 Jun 07; 7(3):664-79.
Score: 0.342
-
Use of isoform-specific UGT metabolism to determine and describe rates and profiles of glucuronidation of wogonin and oroxylin A by human liver and intestinal microsomes. Pharm Res. 2010 Aug; 27(8):1568-83.
Score: 0.339
-
Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Mol Pharm. 2009 Nov-Dec; 6(6):1703-15.
Score: 0.328
-
Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition. Drug Metab Dispos. 2005 Dec; 33(12):1777-84.
Score: 0.245
-
Sulfation of selected mono-hydroxyflavones by sulfotransferases in vitro: a species and gender comparison. J Pharm Pharmacol. 2011 Jul; 63(7):967-70.
Score: 0.092
-
Biopharmaceutical and pharmacokinetic characterization of matrine as determined by a sensitive and robust UPLC-MS/MS method. J Pharm Biomed Anal. 2010 Apr 06; 51(5):1120-7.
Score: 0.082
-
Structure and concentration changes affect characterization of UGT isoform-specific metabolism of isoflavones. Mol Pharm. 2009 Sep-Oct; 6(5):1466-82.
Score: 0.081
-
Disposition of flavonoids via enteric recycling: UDP-glucuronosyltransferase (UGT) 1As deficiency in Gunn rats is compensated by increases in UGT2Bs activities. J Pharmacol Exp Ther. 2009 Jun; 329(3):1023-31.
Score: 0.078
-
Disposition of flavonoids via enteric recycling: structural effects and lack of correlations between in vitro and in situ metabolic properties. Drug Metab Dispos. 2006 Nov; 34(11):1837-48.
Score: 0.065
-
Disposition of flavonoids via enteric recycling: enzyme-transporter coupling affects metabolism of biochanin A and formononetin and excretion of their phase II conjugates. J Pharmacol Exp Ther. 2004 Sep; 310(3):1103-13.
Score: 0.056
-
Identification of CYP1A2 as the main isoform for the phase I hydroxylated metabolism of genistein and a prodrug converting enzyme of methylated isoflavones. Drug Metab Dispos. 2003 Jul; 31(7):924-31.
Score: 0.053
-
CYP3A-dependent drug metabolism is reduced in bacterial inflammation in mice. Br J Pharmacol. 2012 Aug; 166(7):2176-87.
Score: 0.025