Connection

PENGFEI LIU to Infant

This is a "connection" page, showing publications PENGFEI LIU has written about Infant.
Connection Strength

0.229
  1. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell. 2011 Sep 16; 146(6):889-903.
    View in: PubMed
    Score: 0.032
  2. Intraspinal clear-cell meningioma: case report and review of literature. Surg Neurol. 2005 Mar; 63(3):285-8; discussion 288-9.
    View in: PubMed
    Score: 0.020
  3. Biallelic and De Novo Variants in DONSON Reveal a Clinical Spectrum of Cell Cycle-opathies with Microcephaly, Dwarfism and Skeletal Abnormalities. Am J Med Genet A. 2019 10; 179(10):2056-2066.
    View in: PubMed
    Score: 0.014
  4. De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome. Genome Med. 2019 02 28; 11(1):12.
    View in: PubMed
    Score: 0.013
  5. Biallelic loss of function variants in PPP1R21 cause a neurodevelopmental syndrome with impaired endocytic function. Hum Mutat. 2019 03; 40(3):267-280.
    View in: PubMed
    Score: 0.013
  6. De Novo Missense Variants in TRAF7 Cause Developmental Delay, Congenital Anomalies, and Dysmorphic Features. Am J Hum Genet. 2018 07 05; 103(1):154-162.
    View in: PubMed
    Score: 0.013
  7. Expanding the FANCO/RAD51C associated phenotype: Cleft lip and palate and lobar holoprosencephaly, two rare findings in Fanconi anemia. Eur J Med Genet. 2018 May; 61(5):257-261.
    View in: PubMed
    Score: 0.012
  8. Use of Exome Sequencing for Infants in Intensive Care Units: Ascertainment of Severe Single-Gene Disorders and Effect on Medical Management. JAMA Pediatr. 2017 12 04; 171(12):e173438.
    View in: PubMed
    Score: 0.012
  9. Phenotypic and molecular characterisation of CDK13-related congenital heart defects, dysmorphic facial features and intellectual developmental disorders. Genome Med. 2017 08 14; 9(1):73.
    View in: PubMed
    Score: 0.012
  10. Copy-Number Variation Contributes to the Mutational Load of Bardet-Biedl Syndrome. Am J Hum Genet. 2016 08 04; 99(2):318-36.
    View in: PubMed
    Score: 0.011
  11. Recurrent Muscle Weakness with Rhabdomyolysis, Metabolic Crises, and Cardiac Arrhythmia Due to Bi-allelic TANGO2 Mutations. Am J Hum Genet. 2016 Feb 04; 98(2):347-57.
    View in: PubMed
    Score: 0.011
  12. Nonrecurrent 17p11.2p12 Rearrangement Events that Result in Two Concomitant Genomic Disorders: The PMP22-RAI1 Contiguous Gene Duplication Syndrome. Am J Hum Genet. 2015 Nov 05; 97(5):691-707.
    View in: PubMed
    Score: 0.011
  13. X-linked acrogigantism syndrome: clinical profile and therapeutic responses. Endocr Relat Cancer. 2015 Jun; 22(3):353-67.
    View in: PubMed
    Score: 0.010
  14. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med. 2014 Dec 18; 371(25):2363-74.
    View in: PubMed
    Score: 0.010
  15. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014 Nov 12; 312(18):1870-9.
    View in: PubMed
    Score: 0.010
  16. Inherited dup(17)(p11.2p11.2): expanding the phenotype of the Potocki-Lupski syndrome. Am J Med Genet A. 2014 Feb; 164A(2):500-4.
    View in: PubMed
    Score: 0.009
  17. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J Med Genet. 2010 May; 47(5):332-41.
    View in: PubMed
    Score: 0.007
  18. Comparative studies of bone marrow from the United States and Japan. Ann Clin Lab Sci. 1989 Sep-Oct; 19(5):345-51.
    View in: PubMed
    Score: 0.007
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.