Connection

TIMOTHY PALZKILL to Kinetics

This is a "connection" page, showing publications TIMOTHY PALZKILL has written about Kinetics.
Connection Strength

2.403
  1. Mechanistic Basis of OXA-48-like ?-Lactamases' Hydrolysis of Carbapenems. ACS Infect Dis. 2021 02 12; 7(2):445-460.
    View in: PubMed
    Score: 0.155
  2. KPC-2 ?-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. J Biol Chem. 2021 Jan-Jun; 296:100155.
    View in: PubMed
    Score: 0.154
  3. Synergistic effects of functionally distinct substitutions in ?-lactamase variants shed light on the evolution of bacterial drug resistance. J Biol Chem. 2018 11 16; 293(46):17971-17984.
    View in: PubMed
    Score: 0.132
  4. Systematic substitutions at BLIP position 50 result in changes in binding specificity for class A ?-lactamases. BMC Biochem. 2017 03 06; 18(1):2.
    View in: PubMed
    Score: 0.118
  5. BLIP-II Employs Differential Hotspot Residues To Bind Structurally Similar Staphylococcus aureus PBP2a and Class A ?-Lactamases. Biochemistry. 2017 02 28; 56(8):1075-1084.
    View in: PubMed
    Score: 0.118
  6. Engineering Specificity from Broad to Narrow: Design of a ?-Lactamase Inhibitory Protein (BLIP) Variant That Exclusively Binds and Detects KPC ?-Lactamase. ACS Infect Dis. 2016 12 09; 2(12):969-979.
    View in: PubMed
    Score: 0.115
  7. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-?-Lactamase is Fragile to Mutations. Sci Rep. 2016 09 12; 6:33195.
    View in: PubMed
    Score: 0.114
  8. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine ?-Lactamases by Relieving Steric Strain. Biochemistry. 2016 05 03; 55(17):2479-90.
    View in: PubMed
    Score: 0.111
  9. A triple mutant in the O-loop of TEM-1 ?-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis. J Biol Chem. 2015 Apr 17; 290(16):10382-94.
    View in: PubMed
    Score: 0.103
  10. Role of ?-lactamase residues in a common interface for binding the structurally unrelated inhibitory proteins BLIP and BLIP-II. Protein Sci. 2014 Sep; 23(9):1235-46.
    View in: PubMed
    Score: 0.098
  11. Identification of the ?-lactamase inhibitor protein-II (BLIP-II) interface residues essential for binding affinity and specificity for class A ?-lactamases. J Biol Chem. 2013 Jun 14; 288(24):17156-66.
    View in: PubMed
    Score: 0.091
  12. Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-?-lactamase active site. Antimicrob Agents Chemother. 2012 Nov; 56(11):5667-77.
    View in: PubMed
    Score: 0.086
  13. Analysis of the functional contributions of Asn233 in metallo-?-lactamase IMP-1. Antimicrob Agents Chemother. 2011 Dec; 55(12):5696-702.
    View in: PubMed
    Score: 0.081
  14. Analysis of the binding forces driving the tight interactions between beta-lactamase inhibitory protein-II (BLIP-II) and class A beta-lactamases. J Biol Chem. 2011 Sep 16; 286(37):32723-35.
    View in: PubMed
    Score: 0.080
  15. Identification of a ?-lactamase inhibitory protein variant that is a potent inhibitor of Staphylococcus PC1 ?-lactamase. J Mol Biol. 2011 Mar 11; 406(5):730-44.
    View in: PubMed
    Score: 0.077
  16. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis. J Biol Chem. 2009 Nov 27; 284(48):33703-12.
    View in: PubMed
    Score: 0.071
  17. Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM-1 beta-lactamase. Protein Sci. 2009 Oct; 18(10):2080-9.
    View in: PubMed
    Score: 0.071
  18. Genetic and structural characterization of an L201P global suppressor substitution in TEM-1 beta-lactamase. J Mol Biol. 2008 Dec 05; 384(1):151-64.
    View in: PubMed
    Score: 0.066
  19. Amino acid residues that contribute to substrate specificity of class A beta-lactamase SME-1. Antimicrob Agents Chemother. 2005 Aug; 49(8):3421-7.
    View in: PubMed
    Score: 0.053
  20. Dissecting the protein-protein interface between beta-lactamase inhibitory protein and class A beta-lactamases. J Biol Chem. 2004 Oct 08; 279(41):42860-6.
    View in: PubMed
    Score: 0.049
  21. Evaluation of penicillin-based inhibitors of the class A and B beta-lactamases from Bacillus anthracis. Biochem Biophys Res Commun. 2004 Jan 16; 313(3):541-5.
    View in: PubMed
    Score: 0.048
  22. Determinants of binding affinity and specificity for the interaction of TEM-1 and SME-1 beta-lactamase with beta-lactamase inhibitory protein. J Biol Chem. 2003 Nov 14; 278(46):45706-12.
    View in: PubMed
    Score: 0.046
  23. Biochemical characterization of beta-lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob Agents Chemother. 2003 Jun; 47(6):2040-2.
    View in: PubMed
    Score: 0.046
  24. An analysis of why highly similar enzymes evolve differently. Genetics. 2003 Feb; 163(2):457-66.
    View in: PubMed
    Score: 0.045
  25. Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection. Protein Sci. 2001 Dec; 10(12):2556-65.
    View in: PubMed
    Score: 0.041
  26. Design of potent beta-lactamase inhibitors by phage display of beta-lactamase inhibitory protein. J Biol Chem. 2000 May 19; 275(20):14964-8.
    View in: PubMed
    Score: 0.037
  27. The role of residue 238 of TEM-1 beta-lactamase in the hydrolysis of extended-spectrum antibiotics. J Biol Chem. 1998 Oct 09; 273(41):26603-9.
    View in: PubMed
    Score: 0.033
  28. Cephalosporin substrate specificity determinants of TEM-1 beta-lactamase. J Biol Chem. 1997 Nov 14; 272(46):29144-50.
    View in: PubMed
    Score: 0.031
  29. Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime. J Biol Chem. 1996 Sep 13; 271(37):22538-45.
    View in: PubMed
    Score: 0.029
  30. Effect of threonine-to-methionine substitution at position 265 on structure and function of TEM-1 beta-lactamase. Antimicrob Agents Chemother. 1994 Oct; 38(10):2266-9.
    View in: PubMed
    Score: 0.025
  31. Characterization of TEM-1 beta-lactamase mutants from positions 238 to 241 with increased catalytic efficiency for ceftazidime. J Biol Chem. 1994 Sep 23; 269(38):23444-50.
    View in: PubMed
    Score: 0.025
  32. Structural insight into the kinetics and DeltaCp of interactions between TEM-1 beta-lactamase and beta-lactamase inhibitory protein (BLIP). J Biol Chem. 2009 Jan 02; 284(1):595-609.
    View in: PubMed
    Score: 0.017
  33. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases. Spectrochim Acta A Mol Biomol Spectrosc. 2004 May; 60(6):1279-89.
    View in: PubMed
    Score: 0.012
  34. A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci U S A. 2001 Jan 02; 98(1):283-8.
    View in: PubMed
    Score: 0.010
  35. Structure-function analysis of alpha-helix H4 using PSE-4 as a model enzyme representative of class A beta-lactamases. Protein Eng. 2000 Apr; 13(4):267-74.
    View in: PubMed
    Score: 0.009
  36. The rate-limiting step in the folding of the cis-Pro167Thr mutant of TEM-1 beta-lactamase is the trans to cis isomerization of a non-proline peptide bond. Proteins. 1996 May; 25(1):104-11.
    View in: PubMed
    Score: 0.007
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.