Connection

TIMOTHY PALZKILL to Amino Acid Sequence

This is a "connection" page, showing publications TIMOTHY PALZKILL has written about Amino Acid Sequence.
Connection Strength

2.191
  1. Amino acid residues that contribute to substrate specificity of class A beta-lactamase SME-1. Antimicrob Agents Chemother. 2005 Aug; 49(8):3421-7.
    View in: PubMed
    Score: 0.179
  2. Deep Mutational Scanning Reveals the Active-Site Sequence Requirements for the Colistin Antibiotic Resistance Enzyme MCR-1. mBio. 2021 12 21; 12(6):e0277621.
    View in: PubMed
    Score: 0.138
  3. Protein minimization by random fragmentation and selection. Protein Eng. 2001 Jul; 14(7):487-92.
    View in: PubMed
    Score: 0.135
  4. High-Resolution Mapping of Human Norovirus Antigens via Genomic Phage Display Library Selections and Deep Sequencing. J Virol. 2020 12 09; 95(1).
    View in: PubMed
    Score: 0.130
  5. Systematic substitutions at BLIP position 50 result in changes in binding specificity for class A ?-lactamases. BMC Biochem. 2017 03 06; 18(1):2.
    View in: PubMed
    Score: 0.100
  6. Identification and Characterization of Single-Chain Antibodies that Specifically Bind GI Noroviruses. PLoS One. 2017; 12(1):e0170162.
    View in: PubMed
    Score: 0.099
  7. Deep sequencing of phage-displayed peptide libraries reveals sequence motif that detects norovirus. Protein Eng Des Sel. 2017 Feb; 30(2):129-139.
    View in: PubMed
    Score: 0.099
  8. Deep Sequencing of Random Mutant Libraries Reveals the Active Site of the Narrow Specificity CphA Metallo-?-Lactamase is Fragile to Mutations. Sci Rep. 2016 09 12; 6:33195.
    View in: PubMed
    Score: 0.097
  9. Comment on: Resistance gene naming and numbering: is it a new gene or not? J Antimicrob Chemother. 2016 09; 71(9):2677-8.
    View in: PubMed
    Score: 0.095
  10. Identification of human single-chain antibodies with broad reactivity for noroviruses. Protein Eng Des Sel. 2014 Oct; 27(10):339-49.
    View in: PubMed
    Score: 0.083
  11. Deep sequencing of systematic combinatorial libraries reveals ?-lactamase sequence constraints at high resolution. J Mol Biol. 2012 Dec 07; 424(3-4):150-67.
    View in: PubMed
    Score: 0.073
  12. Determination of the amino acid sequence requirements for catalysis by the highly proficient orotidine monophosphate decarboxylase. Protein Sci. 2011 Nov; 20(11):1891-906.
    View in: PubMed
    Score: 0.068
  13. Analysis of the functional contributions of Asn233 in metallo-?-lactamase IMP-1. Antimicrob Agents Chemother. 2011 Dec; 55(12):5696-702.
    View in: PubMed
    Score: 0.068
  14. Use of periplasmic target protein capture for phage display engineering of tight-binding protein-protein interactions. Protein Eng Des Sel. 2011 Nov; 24(11):819-28.
    View in: PubMed
    Score: 0.068
  15. Identification and characterization of beta-lactamase inhibitor protein-II (BLIP-II) interactions with beta-lactamases using phage display. Protein Eng Des Sel. 2010 Jun; 23(6):469-78.
    View in: PubMed
    Score: 0.062
  16. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis. J Biol Chem. 2009 Nov 27; 284(48):33703-12.
    View in: PubMed
    Score: 0.060
  17. Fine mapping of the sequence requirements for binding of beta-lactamase inhibitory protein (BLIP) to TEM-1 beta-lactamase using a genetic screen for BLIP function. J Mol Biol. 2009 Jun 05; 389(2):401-12.
    View in: PubMed
    Score: 0.058
  18. A broad-spectrum peptide inhibitor of beta-lactamase identified using phage display and peptide arrays. Protein Eng. 2003 Nov; 16(11):853-60.
    View in: PubMed
    Score: 0.040
  19. Amino acid sequence requirements at residues 69 and 238 for the SME-1 beta-lactamase to confer resistance to beta-lactam antibiotics. Antimicrob Agents Chemother. 2003 Mar; 47(3):1062-7.
    View in: PubMed
    Score: 0.038
  20. Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection. Protein Sci. 2001 Dec; 10(12):2556-65.
    View in: PubMed
    Score: 0.035
  21. Amino acid sequence determinants of extended spectrum cephalosporin hydrolysis by the class C P99 beta-lactamase. J Biol Chem. 2001 Dec 07; 276(49):46568-74.
    View in: PubMed
    Score: 0.034
  22. Design of potent beta-lactamase inhibitors by phage display of beta-lactamase inhibitory protein. J Biol Chem. 2000 May 19; 275(20):14964-8.
    View in: PubMed
    Score: 0.031
  23. A Standard Numbering Scheme for Class C ?-Lactamases. Antimicrob Agents Chemother. 2020 02 21; 64(3).
    View in: PubMed
    Score: 0.031
  24. Susceptibility of beta-lactamase to core amino acid substitutions. Protein Eng. 1999 Sep; 12(9):761-9.
    View in: PubMed
    Score: 0.030
  25. Identification of residues in beta-lactamase critical for binding beta-lactamase inhibitory protein. J Biol Chem. 1999 Mar 12; 274(11):6963-71.
    View in: PubMed
    Score: 0.029
  26. GII.4 Norovirus Protease Shows pH-Sensitive Proteolysis with a Unique Arg-His Pairing in the Catalytic Site. J Virol. 2019 03 15; 93(6).
    View in: PubMed
    Score: 0.029
  27. Display of functional beta-lactamase inhibitory protein on the surface of M13 bacteriophage. Antimicrob Agents Chemother. 1998 Nov; 42(11):2893-7.
    View in: PubMed
    Score: 0.028
  28. Cephalosporin substrate specificity determinants of TEM-1 beta-lactamase. J Biol Chem. 1997 Nov 14; 272(46):29144-50.
    View in: PubMed
    Score: 0.026
  29. Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime. J Biol Chem. 1996 Sep 13; 271(37):22538-45.
    View in: PubMed
    Score: 0.024
  30. Amino acid sequence determinants of beta-lactamase structure and activity. J Mol Biol. 1996 May 17; 258(4):688-703.
    View in: PubMed
    Score: 0.024
  31. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. J Bacteriol. 1996 Apr; 178(7):1821-8.
    View in: PubMed
    Score: 0.023
  32. Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase. Mol Microbiol. 1994 Apr; 12(2):217-29.
    View in: PubMed
    Score: 0.020
  33. Selection of functional signal peptide cleavage sites from a library of random sequences. J Bacteriol. 1994 Feb; 176(3):563-8.
    View in: PubMed
    Score: 0.020
  34. Probing beta-lactamase structure and function using random replacement mutagenesis. Proteins. 1992 Sep; 14(1):29-44.
    View in: PubMed
    Score: 0.018
  35. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase. J Bacteriol. 1992 Aug; 174(16):5237-43.
    View in: PubMed
    Score: 0.018
  36. An amino-terminal signal peptide of Vfr protein negatively influences RopB-dependent SpeB expression and attenuates virulence in Streptococcus pyogenes. Mol Microbiol. 2011 Dec; 82(6):1481-95.
    View in: PubMed
    Score: 0.017
  37. Co-crystal structures of PKG I? (92-227) with cGMP and cAMP reveal the molecular details of cyclic-nucleotide binding. PLoS One. 2011 Apr 19; 6(4):e18413.
    View in: PubMed
    Score: 0.017
  38. Epitope mapping and use of epitope-specific antisera to characterize the VP5* binding site in rotavirus SA11 NSP4. Virology. 2008 Mar 30; 373(1):211-28.
    View in: PubMed
    Score: 0.013
  39. Using peptide arrays to define nuclear carrier binding sites on nucleoporins. Methods. 2006 Aug; 39(4):329-41.
    View in: PubMed
    Score: 0.012
  40. Human immune response to streptococcal inhibitor of complement, a serotype M1 group A Streptococcus extracellular protein involved in epidemics. J Infect Dis. 2000 Nov; 182(5):1425-36.
    View in: PubMed
    Score: 0.008
  41. Roles of amino acids 161 to 179 in the PSE-4 omega loop in substrate specificity and in resistance to ceftazidime. Antimicrob Agents Chemother. 1998 Oct; 42(10):2576-83.
    View in: PubMed
    Score: 0.007
  42. Alanine-scanning mutagenesis reveals residues involved in binding of pap-3-encoded pili. J Bacteriol. 1994 Apr; 176(8):2312-7.
    View in: PubMed
    Score: 0.005
  43. Systematic mutagenesis of the yeast mating pheromone receptor third intracellular loop. J Biol Chem. 1994 Mar 25; 269(12):8831-41.
    View in: PubMed
    Score: 0.005
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.