Connection

TIMOTHY PALZKILL to Escherichia coli

This is a "connection" page, showing publications TIMOTHY PALZKILL has written about Escherichia coli.
Connection Strength

8.718
  1. Network of epistatic interactions in an enzyme active site revealed by large-scale deep mutational scanning. Proc Natl Acad Sci U S A. 2024 Mar 19; 121(12):e2313513121.
    View in: PubMed
    Score: 0.605
  2. Mutagenesis and structural analysis reveal the CTX-M ?-lactamase active site is optimized for cephalosporin catalysis and drug resistance. J Biol Chem. 2023 05; 299(5):104630.
    View in: PubMed
    Score: 0.565
  3. Mapping the determinants of catalysis and substrate specificity of the antibiotic resistance enzyme CTX-M ?-lactamase. Commun Biol. 2023 01 12; 6(1):35.
    View in: PubMed
    Score: 0.558
  4. An active site loop toggles between conformations to control antibiotic hydrolysis and inhibition potency for CTX-M ?-lactamase drug-resistance enzymes. Nat Commun. 2022 11 07; 13(1):6726.
    View in: PubMed
    Score: 0.551
  5. Unique Diacidic Fragments Inhibit the OXA-48 Carbapenemase and Enhance the Killing of Escherichia coli Producing OXA-48. ACS Infect Dis. 2021 12 10; 7(12):3345-3354.
    View in: PubMed
    Score: 0.516
  6. Deep Mutational Scanning Reveals the Active-Site Sequence Requirements for the Colistin Antibiotic Resistance Enzyme MCR-1. mBio. 2021 12 21; 12(6):e0277621.
    View in: PubMed
    Score: 0.515
  7. KPC-2 ?-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. J Biol Chem. 2021 Jan-Jun; 296:100155.
    View in: PubMed
    Score: 0.483
  8. Antagonism between substitutions in ?-lactamase explains a path not taken in the evolution of bacterial drug resistance. J Biol Chem. 2020 05 22; 295(21):7376-7390.
    View in: PubMed
    Score: 0.462
  9. The Drug-Resistant Variant P167S Expands the Substrate Profile of CTX-M ?-Lactamases for Oxyimino-Cephalosporin Antibiotics by Enlarging the Active Site upon Acylation. Biochemistry. 2017 07 11; 56(27):3443-3453.
    View in: PubMed
    Score: 0.380
  10. Engineering Specificity from Broad to Narrow: Design of a ?-Lactamase Inhibitory Protein (BLIP) Variant That Exclusively Binds and Detects KPC ?-Lactamase. ACS Infect Dis. 2016 12 09; 2(12):969-979.
    View in: PubMed
    Score: 0.363
  11. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine ?-Lactamases by Relieving Steric Strain. Biochemistry. 2016 05 03; 55(17):2479-90.
    View in: PubMed
    Score: 0.350
  12. A triple mutant in the O-loop of TEM-1 ?-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis. J Biol Chem. 2015 Apr 17; 290(16):10382-94.
    View in: PubMed
    Score: 0.323
  13. Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-?-lactamase active site. Antimicrob Agents Chemother. 2012 Nov; 56(11):5667-77.
    View in: PubMed
    Score: 0.271
  14. Determination of the amino acid sequence requirements for catalysis by the highly proficient orotidine monophosphate decarboxylase. Protein Sci. 2011 Nov; 20(11):1891-906.
    View in: PubMed
    Score: 0.255
  15. Analysis of the functional contributions of Asn233 in metallo-?-lactamase IMP-1. Antimicrob Agents Chemother. 2011 Dec; 55(12):5696-702.
    View in: PubMed
    Score: 0.254
  16. Multiple global suppressors of protein stability defects facilitate the evolution of extended-spectrum TEM ?-lactamases. J Mol Biol. 2010 Dec 17; 404(5):832-46.
    View in: PubMed
    Score: 0.239
  17. Slow Protein Dynamics Elicits New Enzymatic Functions by Means of Epistatic Interactions. Mol Biol Evol. 2022 10 07; 39(10).
    View in: PubMed
    Score: 0.137
  18. A drug-resistant ?-lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency. J Biol Chem. 2020 12 25; 295(52):18239-18255.
    View in: PubMed
    Score: 0.120
  19. Identifying Oxacillinase-48 Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries. ACS Infect Dis. 2020 05 08; 6(5):1214-1227.
    View in: PubMed
    Score: 0.115
  20. Differential active site requirements for NDM-1 ?-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics. Nat Commun. 2018 10 30; 9(1):4524.
    View in: PubMed
    Score: 0.104
  21. Synergistic effects of functionally distinct substitutions in ?-lactamase variants shed light on the evolution of bacterial drug resistance. J Biol Chem. 2018 11 16; 293(46):17971-17984.
    View in: PubMed
    Score: 0.104
  22. A natural polymorphism in beta-lactamase is a global suppressor. Proc Natl Acad Sci U S A. 1997 Aug 05; 94(16):8801-6.
    View in: PubMed
    Score: 0.096
  23. Characterization of the global stabilizing substitution A77V and its role in the evolution of CTX-M ?-lactamases. Antimicrob Agents Chemother. 2015 Nov; 59(11):6741-8.
    View in: PubMed
    Score: 0.084
  24. Molecular basis for the catalytic specificity of the CTX-M extended-spectrum ?-lactamases. Biochemistry. 2015 Jan 20; 54(2):447-57.
    View in: PubMed
    Score: 0.080
  25. Identification of human single-chain antibodies with broad reactivity for noroviruses. Protein Eng Des Sel. 2014 Oct; 27(10):339-49.
    View in: PubMed
    Score: 0.077
  26. Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase. Mol Microbiol. 1994 Apr; 12(2):217-29.
    View in: PubMed
    Score: 0.076
  27. Identification of the ?-lactamase inhibitor protein-II (BLIP-II) interface residues essential for binding affinity and specificity for class A ?-lactamases. J Biol Chem. 2013 Jun 14; 288(24):17156-66.
    View in: PubMed
    Score: 0.071
  28. Deep sequencing of systematic combinatorial libraries reveals ?-lactamase sequence constraints at high resolution. J Mol Biol. 2012 Dec 07; 424(3-4):150-67.
    View in: PubMed
    Score: 0.068
  29. Use of periplasmic target protein capture for phage display engineering of tight-binding protein-protein interactions. Protein Eng Des Sel. 2011 Nov; 24(11):819-28.
    View in: PubMed
    Score: 0.064
  30. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis. J Biol Chem. 2009 Nov 27; 284(48):33703-12.
    View in: PubMed
    Score: 0.056
  31. Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM-1 beta-lactamase. Protein Sci. 2009 Oct; 18(10):2080-9.
    View in: PubMed
    Score: 0.056
  32. Genetic and structural characterization of an L201P global suppressor substitution in TEM-1 beta-lactamase. J Mol Biol. 2008 Dec 05; 384(1):151-64.
    View in: PubMed
    Score: 0.052
  33. A fitness cost associated with the antibiotic resistance enzyme SME-1 beta-lactamase. Genetics. 2007 Aug; 176(4):2381-92.
    View in: PubMed
    Score: 0.047
  34. Experimental evolution of gene duplicates in a bacterial plasmid model. J Mol Evol. 2007 Feb; 64(2):215-22.
    View in: PubMed
    Score: 0.046
  35. Amino acid residues that contribute to substrate specificity of class A beta-lactamase SME-1. Antimicrob Agents Chemother. 2005 Aug; 49(8):3421-7.
    View in: PubMed
    Score: 0.042
  36. Functional analysis of active site residues of the fosfomycin resistance enzyme FosA from Pseudomonas aeruginosa. J Biol Chem. 2005 May 06; 280(18):17786-91.
    View in: PubMed
    Score: 0.040
  37. Determinants of binding affinity and specificity for the interaction of TEM-1 and SME-1 beta-lactamase with beta-lactamase inhibitory protein. J Biol Chem. 2003 Nov 14; 278(46):45706-12.
    View in: PubMed
    Score: 0.036
  38. Biochemical characterization of beta-lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob Agents Chemother. 2003 Jun; 47(6):2040-2.
    View in: PubMed
    Score: 0.036
  39. Amino acid sequence requirements at residues 69 and 238 for the SME-1 beta-lactamase to confer resistance to beta-lactam antibiotics. Antimicrob Agents Chemother. 2003 Mar; 47(3):1062-7.
    View in: PubMed
    Score: 0.035
  40. BAC library of T. pallidum DNA in E. coli. Genome Res. 2002 Mar; 12(3):515-22.
    View in: PubMed
    Score: 0.033
  41. Binding properties of a peptide derived from beta-lactamase inhibitory protein. Antimicrob Agents Chemother. 2001 Dec; 45(12):3279-86.
    View in: PubMed
    Score: 0.032
  42. Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection. Protein Sci. 2001 Dec; 10(12):2556-65.
    View in: PubMed
    Score: 0.032
  43. A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci U S A. 2001 Jan 02; 98(1):283-8.
    View in: PubMed
    Score: 0.030
  44. Use of the arabinose p(bad) promoter for tightly regulated display of proteins on bacteriophage. Gene. 2000 Jun 27; 251(2):187-97.
    View in: PubMed
    Score: 0.029
  45. Design of potent beta-lactamase inhibitors by phage display of beta-lactamase inhibitory protein. J Biol Chem. 2000 May 19; 275(20):14964-8.
    View in: PubMed
    Score: 0.029
  46. Susceptibility of beta-lactamase to core amino acid substitutions. Protein Eng. 1999 Sep; 12(9):761-9.
    View in: PubMed
    Score: 0.028
  47. Mapping protein-ligand interactions using whole genome phage display libraries. Gene. 1998 Oct 09; 221(1):79-83.
    View in: PubMed
    Score: 0.026
  48. Amino acid sequence determinants of beta-lactamase structure and activity. J Mol Biol. 1996 May 17; 258(4):688-703.
    View in: PubMed
    Score: 0.022
  49. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. J Bacteriol. 1996 Apr; 178(7):1821-8.
    View in: PubMed
    Score: 0.022
  50. Alanine-scanning mutagenesis reveals residues involved in binding of pap-3-encoded pili. J Bacteriol. 1994 Apr; 176(8):2312-7.
    View in: PubMed
    Score: 0.019
  51. Identification of novel and cross-species seroreactive proteins from Bacillus anthracis using a ligation-independent cloning-based, SOS-inducible expression system. Microb Pathog. 2012 Nov-Dec; 53(5-6):250-8.
    View in: PubMed
    Score: 0.017
  52. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase. J Bacteriol. 1992 Aug; 174(16):5237-43.
    View in: PubMed
    Score: 0.017
  53. Generation and validation of a Shewanella oneidensis MR-1 clone set for protein expression and phage display. PLoS One. 2008 Aug 20; 3(8):e2983.
    View in: PubMed
    Score: 0.013
  54. Probing regulon of ArcA in Shewanella oneidensis MR-1 by integrated genomic analyses. BMC Genomics. 2008 Jan 25; 9:42.
    View in: PubMed
    Score: 0.012
  55. The protein network of bacterial motility. Mol Syst Biol. 2007; 3:128.
    View in: PubMed
    Score: 0.012
  56. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases. Spectrochim Acta A Mol Biomol Spectrosc. 2004 May; 60(6):1279-89.
    View in: PubMed
    Score: 0.010
  57. Outbreak of ceftazidime resistance due to a novel extended-spectrum beta-lactamase in isolates from cancer patients. Antimicrob Agents Chemother. 1992 Sep; 36(9):1991-6.
    View in: PubMed
    Score: 0.004
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.