Connection

TIMOTHY PALZKILL to Ceftazidime

This is a "connection" page, showing publications TIMOTHY PALZKILL has written about Ceftazidime.
Connection Strength

4.878
  1. The mechanism of ceftazidime and cefiderocol hydrolysis by D179Y variants of KPC carbapenemases is similar and involves the formation of a long-lived covalent intermediate. Antimicrob Agents Chemother. 2024 03 06; 68(3):e0110823.
    View in: PubMed
    Score: 0.863
  2. Klebsiella pneumoniae carbapenemase variant 44 acquires ceftazidime-avibactam resistance by altering the conformation of active-site loops. J Biol Chem. 2024 01; 300(1):105493.
    View in: PubMed
    Score: 0.853
  3. Mapping the determinants of catalysis and substrate specificity of the antibiotic resistance enzyme CTX-M ?-lactamase. Commun Biol. 2023 01 12; 6(1):35.
    View in: PubMed
    Score: 0.804
  4. The Drug-Resistant Variant P167S Expands the Substrate Profile of CTX-M ?-Lactamases for Oxyimino-Cephalosporin Antibiotics by Enlarging the Active Site upon Acylation. Biochemistry. 2017 07 11; 56(27):3443-3453.
    View in: PubMed
    Score: 0.547
  5. A triple mutant in the O-loop of TEM-1 ?-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis. J Biol Chem. 2015 Apr 17; 290(16):10382-94.
    View in: PubMed
    Score: 0.465
  6. An analysis of why highly similar enzymes evolve differently. Genetics. 2003 Feb; 163(2):457-66.
    View in: PubMed
    Score: 0.202
  7. Slow Protein Dynamics Elicits New Enzymatic Functions by Means of Epistatic Interactions. Mol Biol Evol. 2022 10 07; 39(10).
    View in: PubMed
    Score: 0.197
  8. Antagonism between substitutions in ?-lactamase explains a path not taken in the evolution of bacterial drug resistance. J Biol Chem. 2020 05 22; 295(21):7376-7390.
    View in: PubMed
    Score: 0.166
  9. Synergistic effects of functionally distinct substitutions in ?-lactamase variants shed light on the evolution of bacterial drug resistance. J Biol Chem. 2018 11 16; 293(46):17971-17984.
    View in: PubMed
    Score: 0.149
  10. Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime. J Biol Chem. 1996 Sep 13; 271(37):22538-45.
    View in: PubMed
    Score: 0.130
  11. Characterization of the global stabilizing substitution A77V and its role in the evolution of CTX-M ?-lactamases. Antimicrob Agents Chemother. 2015 Nov; 59(11):6741-8.
    View in: PubMed
    Score: 0.120
  12. Natural Variants of the KPC-2 Carbapenemase have Evolved Increased Catalytic Efficiency for Ceftazidime Hydrolysis at the Cost of Enzyme Stability. PLoS Pathog. 2015 Jun; 11(6):e1004949.
    View in: PubMed
    Score: 0.118
  13. Characterization of TEM-1 beta-lactamase mutants from positions 238 to 241 with increased catalytic efficiency for ceftazidime. J Biol Chem. 1994 Sep 23; 269(38):23444-50.
    View in: PubMed
    Score: 0.113
  14. Roles of amino acids 161 to 179 in the PSE-4 omega loop in substrate specificity and in resistance to ceftazidime. Antimicrob Agents Chemother. 1998 Oct; 42(10):2576-83.
    View in: PubMed
    Score: 0.037
  15. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase. J Bacteriol. 1996 Apr; 178(7):1821-8.
    View in: PubMed
    Score: 0.031
  16. Structural Basis for Different Substrate Profiles of Two Closely Related Class D ?-Lactamases and Their Inhibition by Halogens. Biochemistry. 2015 Jun 02; 54(21):3370-80.
    View in: PubMed
    Score: 0.030
  17. Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase. Mol Microbiol. 1994 Apr; 12(2):217-29.
    View in: PubMed
    Score: 0.027
  18. Outbreak of ceftazidime resistance due to a novel extended-spectrum beta-lactamase in isolates from cancer patients. Antimicrob Agents Chemother. 1992 Sep; 36(9):1991-6.
    View in: PubMed
    Score: 0.024
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.