Connection

THOMAS COOPER to Molecular Sequence Data

This is a "connection" page, showing publications THOMAS COOPER has written about Molecular Sequence Data.
Connection Strength

0.536
  1. RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci U S A. 2012 Mar 13; 109(11):4221-6.
    View in: PubMed
    Score: 0.068
  2. Identification of MBNL1 and MBNL3 domains required for splicing activation and repression. Nucleic Acids Res. 2011 Apr; 39(7):2769-80.
    View in: PubMed
    Score: 0.062
  3. Identification of CELF splicing activation and repression domains in vivo. Nucleic Acids Res. 2005; 33(9):2769-80.
    View in: PubMed
    Score: 0.042
  4. Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol Cell Biol. 2005 Feb; 25(3):879-87.
    View in: PubMed
    Score: 0.041
  5. Multiple domains control the subcellular localization and activity of ETR-3, a regulator of nuclear and cytoplasmic RNA processing events. J Cell Sci. 2004 Jul 15; 117(Pt 16):3519-29.
    View in: PubMed
    Score: 0.040
  6. CELF6, a member of the CELF family of RNA-binding proteins, regulates muscle-specific splicing enhancer-dependent alternative splicing. J Biol Chem. 2004 Apr 23; 279(17):17756-64.
    View in: PubMed
    Score: 0.039
  7. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell. 2002 Jul; 10(1):45-53.
    View in: PubMed
    Score: 0.035
  8. The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v4. EMBO J. 2001 Jul 16; 20(14):3821-30.
    View in: PubMed
    Score: 0.032
  9. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol Cell Biol. 2001 Feb; 21(4):1285-96.
    View in: PubMed
    Score: 0.031
  10. In vivo SELEX in vertebrate cells. Methods Mol Biol. 1999; 118:405-17.
    View in: PubMed
    Score: 0.027
  11. Muscle-specific splicing of a heterologous exon mediated by a single muscle-specific splicing enhancer from the cardiac troponin T gene. Mol Cell Biol. 1998 Aug; 18(8):4519-25.
    View in: PubMed
    Score: 0.026
  12. Muscle-specific splicing enhancers regulate inclusion of the cardiac troponin T alternative exon in embryonic skeletal muscle. Mol Cell Biol. 1996 Aug; 16(8):4014-23.
    View in: PubMed
    Score: 0.023
  13. A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol Cell Biol. 1995 Sep; 15(9):4898-907.
    View in: PubMed
    Score: 0.022
  14. The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol Cell Biol. 1993 Jun; 13(6):3660-74.
    View in: PubMed
    Score: 0.018
  15. In vitro splicing of cardiac troponin T precursors. Exon mutations disrupt splicing of the upstream intron. J Biol Chem. 1992 Mar 15; 267(8):5330-8.
    View in: PubMed
    Score: 0.017
  16. Alternative splicing determines the intracellular localization of the novel nuclear protein Nop30 and its interaction with the splicing factor SRp30c. J Biol Chem. 1999 Apr 16; 274(16):10951-62.
    View in: PubMed
    Score: 0.007
  17. A 32-nucleotide exon-splicing enhancer regulates usage of competing 5' splice sites in a differential internal exon. Mol Cell Biol. 1995 Aug; 15(8):3979-88.
    View in: PubMed
    Score: 0.005
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.