Connection

RACHEL SCHIFF to Signal Transduction

This is a "connection" page, showing publications RACHEL SCHIFF has written about Signal Transduction.
Connection Strength

2.059
  1. Biology and therapeutic potential of PI3K signaling in ER+/HER2-negative breast cancer. Breast. 2013 Aug; 22 Suppl 2:S12-8.
    View in: PubMed
    Score: 0.185
  2. Unraveling the mechanisms of endocrine resistance in breast cancer: new therapeutic opportunities. Clin Cancer Res. 2007 Apr 01; 13(7):1950-4.
    View in: PubMed
    Score: 0.118
  3. HER2-Positive Breast Cancer Treatment and Resistance. Adv Exp Med Biol. 2025; 1464:495-525.
    View in: PubMed
    Score: 0.101
  4. Selective CDK7 Inhibition Suppresses Cell Cycle Progression and MYC Signaling While Enhancing Apoptosis in Therapy-resistant Estrogen Receptor-positive Breast Cancer. Clin Cancer Res. 2024 May 01; 30(9):1889-1905.
    View in: PubMed
    Score: 0.097
  5. Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res. 2003 Jan; 9(1 Pt 2):447S-54S.
    View in: PubMed
    Score: 0.088
  6. Interferon Signaling in Estrogen Receptor-positive Breast Cancer: A Revitalized Topic. Endocrinology. 2022 01 01; 163(1).
    View in: PubMed
    Score: 0.082
  7. Activation of the IFN Signaling Pathway is Associated with Resistance to CDK4/6 Inhibitors and Immune Checkpoint Activation in ER-Positive Breast Cancer. Clin Cancer Res. 2021 09 01; 27(17):4870-4882.
    View in: PubMed
    Score: 0.077
  8. Targeting the Mevalonate Pathway to Overcome Acquired Anti-HER2 Treatment Resistance in Breast Cancer. Mol Cancer Res. 2019 11; 17(11):2318-2330.
    View in: PubMed
    Score: 0.070
  9. De-escalation of treatment in HER2-positive breast cancer: Determinants of response and mechanisms of resistance. Breast. 2017 Aug; 34 Suppl 1:S19-S26.
    View in: PubMed
    Score: 0.060
  10. HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in HER2+ Breast Cancer. Clin Cancer Res. 2017 Sep 01; 23(17):5123-5134.
    View in: PubMed
    Score: 0.060
  11. FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci U S A. 2016 10 25; 113(43):E6600-E6609.
    View in: PubMed
    Score: 0.057
  12. Upregulation of ER Signaling as an Adaptive Mechanism of Cell Survival in HER2-Positive Breast Tumors Treated with Anti-HER2 Therapy. Clin Cancer Res. 2015 Sep 01; 21(17):3995-4003.
    View in: PubMed
    Score: 0.052
  13. The oncogenic STP axis promotes triple-negative breast cancer via degradation of the REST tumor suppressor. Cell Rep. 2014 Nov 20; 9(4):1318-32.
    View in: PubMed
    Score: 0.050
  14. Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Res. 2014 Sep 11; 16(5):430.
    View in: PubMed
    Score: 0.050
  15. Therapeutic potential of the dual EGFR/HER2 inhibitor AZD8931 in circumventing endocrine resistance. Breast Cancer Res Treat. 2014 Apr; 144(2):263-72.
    View in: PubMed
    Score: 0.048
  16. Cancer cells resistant to therapy promote cell surface relocalization of GRP78 which complexes with PI3K and enhances PI(3,4,5)P3 production. PLoS One. 2013; 8(11):e80071.
    View in: PubMed
    Score: 0.047
  17. Upregulation of mucin4 in ER-positive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2-targeted therapies. Breast Cancer Res Treat. 2012 Jul; 134(2):583-93.
    View in: PubMed
    Score: 0.042
  18. ?1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast Cancer Res. 2011 Aug 31; 13(4):R84.
    View in: PubMed
    Score: 0.040
  19. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011; 62:233-47.
    View in: PubMed
    Score: 0.038
  20. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res. 2010; 12(3):R40.
    View in: PubMed
    Score: 0.037
  21. Post-transcriptional regulation of chemokine receptor CXCR4 by estrogen in HER2 overexpressing, estrogen receptor-positive breast cancer cells. Breast Cancer Res Treat. 2009 Sep; 117(2):243-51.
    View in: PubMed
    Score: 0.033
  22. Molecular profiles of progesterone receptor loss in human breast tumors. Breast Cancer Res Treat. 2009 Mar; 114(2):287-99.
    View in: PubMed
    Score: 0.032
  23. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res. 2008 Feb 01; 68(3):826-33.
    View in: PubMed
    Score: 0.031
  24. Treatment of human epidermal growth factor receptor 2-overexpressing breast cancer xenografts with multiagent HER-targeted therapy. J Natl Cancer Inst. 2007 May 02; 99(9):694-705.
    View in: PubMed
    Score: 0.030
  25. Resistance to endocrine therapy in breast cancer: exploiting estrogen receptor/growth factor signaling crosstalk. Endocr Relat Cancer. 2006 Dec; 13 Suppl 1:S15-24.
    View in: PubMed
    Score: 0.029
  26. Estrogen dendrimer conjugates that preferentially activate extranuclear, nongenomic versus genomic pathways of estrogen action. Mol Endocrinol. 2006 Mar; 20(3):491-502.
    View in: PubMed
    Score: 0.027
  27. Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: implicated role of growth factor signaling and estrogen receptor coregulators. Cancer Chemother Pharmacol. 2005 Nov; 56 Suppl 1:10-20.
    View in: PubMed
    Score: 0.027
  28. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005 Mar 10; 23(8):1616-22.
    View in: PubMed
    Score: 0.026
  29. Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res. 2005 Jan 15; 11(2 Pt 2):865s-70s.
    View in: PubMed
    Score: 0.025
  30. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004 Jun 16; 96(12):926-35.
    View in: PubMed
    Score: 0.024
  31. Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res. 2004 Jan 01; 10(1 Pt 2):331S-6S.
    View in: PubMed
    Score: 0.024
  32. Growth factor receptor cross-talk with estrogen receptor as a mechanism for tamoxifen resistance in breast cancer. Breast. 2003 Dec; 12(6):362-7.
    View in: PubMed
    Score: 0.023
  33. New mechanisms of signal transduction inhibitor action: receptor tyrosine kinase down-regulation and blockade of signal transactivation. Clin Cancer Res. 2003 Jan; 9(1 Pt 2):516S-23S.
    View in: PubMed
    Score: 0.022
  34. Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene. 2002 Oct 31; 21(50):7680-9.
    View in: PubMed
    Score: 0.022
  35. Management of hormone receptor-positive, human epidermal growth factor 2-negative metastatic breast cancer. Breast Cancer Res Treat. 2021 Nov; 190(2):189-201.
    View in: PubMed
    Score: 0.020
  36. A novel role of ADGRF1 (GPR110) in promoting cellular quiescence and chemoresistance in human epidermal growth factor receptor 2-positive breast cancer. FASEB J. 2021 07; 35(7):e21719.
    View in: PubMed
    Score: 0.020
  37. The bone microenvironment increases phenotypic plasticity of ER+ breast cancer cells. Dev Cell. 2021 04 19; 56(8):1100-1117.e9.
    View in: PubMed
    Score: 0.020
  38. Therapeutic Targeting of Nemo-like Kinase in Primary and Acquired Endocrine-resistant Breast Cancer. Clin Cancer Res. 2021 05 01; 27(9):2648-2662.
    View in: PubMed
    Score: 0.019
  39. The 3D genomic landscape of differential response to EGFR/HER2 inhibition in endocrine-resistant breast cancer cells. Biochim Biophys Acta Gene Regul Mech. 2020 11; 1863(11):194631.
    View in: PubMed
    Score: 0.019
  40. Therapeutic role of recurrent ESR1-CCDC170 gene fusions in breast cancer endocrine resistance. Breast Cancer Res. 2020 08 08; 22(1):84.
    View in: PubMed
    Score: 0.019
  41. Microscaled proteogenomic methods for precision oncology. Nat Commun. 2020 Jan 27; 11(1):532.
    View in: PubMed
    Score: 0.018
  42. Temporal dynamic reorganization of 3D chromatin architecture in hormone-induced breast cancer and endocrine resistance. Nat Commun. 2019 04 03; 10(1):1522.
    View in: PubMed
    Score: 0.017
  43. AhR ligand aminoflavone suppresses a6-integrin-Src-Akt signaling to attenuate tamoxifen resistance in breast cancer cells. J Cell Physiol. 2018 01; 234(1):108-121.
    View in: PubMed
    Score: 0.016
  44. Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer. Nat Med. 2018 05; 24(4):505-511.
    View in: PubMed
    Score: 0.016
  45. Comprehensive functional analysis of the tousled-like kinase 2 frequently amplified in aggressive luminal breast cancers. Nat Commun. 2016 10 03; 7:12991.
    View in: PubMed
    Score: 0.014
  46. The changing role of ER in endocrine resistance. Breast. 2015 Nov; 24 Suppl 2:S60-6.
    View in: PubMed
    Score: 0.013
  47. Recurrent ESR1-CCDC170 rearrangements in an aggressive subset of oestrogen receptor-positive breast cancers. Nat Commun. 2014 Aug 07; 5:4577.
    View in: PubMed
    Score: 0.012
  48. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res. 2014 Jul; 24(7):809-19.
    View in: PubMed
    Score: 0.012
  49. Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized phase II study. Clin Cancer Res. 2011 Mar 01; 17(5):1147-59.
    View in: PubMed
    Score: 0.010
  50. Sphingosine kinase 1 induces tolerance to human epidermal growth factor receptor 2 and prevents formation of a migratory phenotype in response to sphingosine 1-phosphate in estrogen receptor-positive breast cancer cells. Mol Cell Biol. 2010 Aug; 30(15):3827-41.
    View in: PubMed
    Score: 0.009
  51. Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol. 2005 Oct 20; 23(30):7721-35.
    View in: PubMed
    Score: 0.007
  52. Estrogen receptor positivity in mammary tumors of Wnt-1 transgenic mice is influenced by collaborating oncogenic mutations. Oncogene. 2005 Jun 16; 24(26):4220-31.
    View in: PubMed
    Score: 0.007
  53. Upregulation of PKC-delta contributes to antiestrogen resistance in mammary tumor cells. Oncogene. 2005 Apr 28; 24(19):3166-76.
    View in: PubMed
    Score: 0.006
  54. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol. 2005 Apr 10; 23(11):2469-76.
    View in: PubMed
    Score: 0.006
  55. Estrogen receptor: current understanding of its activation and modulation. Clin Cancer Res. 2001 Dec; 7(12 Suppl):4338s-4342s; discussion 4411s-4412s.
    View in: PubMed
    Score: 0.005
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.