Connection

MING HU to Chromatography, High Pressure Liquid

This is a "connection" page, showing publications MING HU has written about Chromatography, High Pressure Liquid.
Connection Strength

2.111
  1. Development and validation of an UPLC-MS/MS method for the quantification of irinotecan, SN-38 and SN-38 glucuronide in plasma, urine, feces, liver and kidney: Application to a pharmacokinetic study of irinotecan in rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2016 Mar 15; 1015-1016:34-41.
    View in: PubMed
    Score: 0.461
  2. Biopharmaceutical and pharmacokinetic characterization of matrine as determined by a sensitive and robust UPLC-MS/MS method. J Pharm Biomed Anal. 2010 Apr 06; 51(5):1120-7.
    View in: PubMed
    Score: 0.300
  3. Determination of osthol and its metabolites in a phase I reaction system and the Caco-2 cell model by HPLC-UV and LC-MS/MS. J Pharm Biomed Anal. 2009 Jul 12; 49(5):1226-32.
    View in: PubMed
    Score: 0.280
  4. Rapid intestinal glucuronidation and hepatic glucuronide recycling contributes significantly to the enterohepatic circulation of icaritin and its glucuronides in vivo. Arch Toxicol. 2020 11; 94(11):3737-3749.
    View in: PubMed
    Score: 0.158
  5. Development and validation of a sensitive LC-MS/MS method for simultaneous determination of eight tyrosine kinase inhibitors and its application in mice pharmacokinetic studies. J Pharm Biomed Anal. 2018 Jan 30; 148:65-72.
    View in: PubMed
    Score: 0.129
  6. Accurate quantification of PGE2 in the polyposis in rat colon (Pirc) model by surrogate analyte-based UPLC-MS/MS. J Pharm Biomed Anal. 2018 Jan 30; 148:42-50.
    View in: PubMed
    Score: 0.127
  7. Development and validation of a highly sensitive UPLC-MS/MS method for simultaneous determination of aconitine, mesaconitine, hypaconitine, and five of their metabolites in rat blood and its application to a pharmacokinetics study of aconitine, mesaconitine, and hypaconitine. Xenobiotica. 2012 Jun; 42(6):518-25.
    View in: PubMed
    Score: 0.086
  8. Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yinyanghuo. Molecules. 2011 Feb 01; 16(2):1336-48.
    View in: PubMed
    Score: 0.081
  9. Breast cancer resistance protein (BCRP) and sulfotransferases contribute significantly to the disposition of genistein in mouse intestine. AAPS J. 2010 Dec; 12(4):525-36.
    View in: PubMed
    Score: 0.078
  10. Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Mol Pharm. 2009 Nov-Dec; 6(6):1703-15.
    View in: PubMed
    Score: 0.075
  11. Variable isoflavone content of red clover products affects intestinal disposition of biochanin A, formononetin, genistein, and daidzein. J Altern Complement Med. 2008 Apr; 14(3):287-97.
    View in: PubMed
    Score: 0.067
  12. Mechanisms responsible for poor oral bioavailability of paeoniflorin: Role of intestinal disposition and interactions with sinomenine. Pharm Res. 2006 Dec; 23(12):2768-80.
    View in: PubMed
    Score: 0.060
  13. Disposition of formononetin via enteric recycling: metabolism and excretion in mouse intestinal perfusion and Caco-2 cell models. Mol Pharm. 2005 Jul-Aug; 2(4):319-28.
    View in: PubMed
    Score: 0.055
  14. Quality, labeling accuracy, and cost comparison of purified soy isoflavonoid products. J Altern Complement Med. 2004 Dec; 10(6):1053-60.
    View in: PubMed
    Score: 0.053
  15. Mechanisms of transport of quinapril in Caco-2 cell monolayers: comparison with cephalexin. Pharm Res. 1995 Aug; 12(8):1120-5.
    View in: PubMed
    Score: 0.028
  16. The Caco-2 cell monolayers as an intestinal metabolism model: metabolism of dipeptide Phe-Pro. J Drug Target. 1994; 2(1):79-89.
    View in: PubMed
    Score: 0.025
  17. Comparison of uptake characteristics of thymidine and zidovudine in a human intestinal epithelial model system. J Pharm Sci. 1993 Aug; 82(8):829-33.
    View in: PubMed
    Score: 0.024
  18. Passive and carrier-mediated intestinal absorption components of captopril. J Pharm Sci. 1988 Dec; 77(12):1007-11.
    View in: PubMed
    Score: 0.017
  19. Utilization of peptide carrier system to improve intestinal absorption: targeting prolidase as a prodrug-converting enzyme. J Pharm Sci. 1992 Feb; 81(2):113-6.
    View in: PubMed
    Score: 0.005
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.