Connection

MING-JER TSAI to Binding Sites

This is a "connection" page, showing publications MING-JER TSAI has written about Binding Sites.
Connection Strength

0.248
  1. SRC-3 Coactivator Governs Dynamic Estrogen-Induced Chromatin Looping Interactions during Transcription. Mol Cell. 2018 05 17; 70(4):679-694.e7.
    View in: PubMed
    Score: 0.029
  2. In vivo transcription of a progesterone-responsive gene is specifically inhibited by a triplex-forming oligonucleotide. Nucleic Acids Res. 1993 Jun 25; 21(12):2789-96.
    View in: PubMed
    Score: 0.021
  3. Kindred S thyroid hormone receptor is an active and constitutive silencer and a repressor for thyroid hormone and retinoic acid responses. Proc Natl Acad Sci U S A. 1992 Nov 15; 89(22):10633-7.
    View in: PubMed
    Score: 0.020
  4. Studies on the mechanism of functional cooperativity between progesterone and estrogen receptors. J Biol Chem. 1991 Sep 05; 266(25):16684-90.
    View in: PubMed
    Score: 0.018
  5. Cell-specific and ubiquitous factors are responsible for the enhancer activity of the rat insulin II gene. J Biol Chem. 1991 Sep 05; 266(25):16708-14.
    View in: PubMed
    Score: 0.018
  6. Chicken ovalbumin upstream promoter transcription factor binds to a negative regulatory region in the human immunodeficiency virus type 1 long terminal repeat. J Virol. 1991 Jun; 65(6):2853-60.
    View in: PubMed
    Score: 0.018
  7. Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol. 2008 Sep 16; 6(9):e227.
    View in: PubMed
    Score: 0.015
  8. Sequential recruitment of steroid receptor coactivator-1 (SRC-1) and p300 enhances progesterone receptor-dependent initiation and reinitiation of transcription from chromatin. Proc Natl Acad Sci U S A. 2001 Oct 23; 98(22):12426-31.
    View in: PubMed
    Score: 0.009
  9. COUP-TF upregulates NGFI-A gene expression through an Sp1 binding site. Mol Cell Biol. 1999 Apr; 19(4):2734-45.
    View in: PubMed
    Score: 0.008
  10. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol. 1999 Feb; 19(2):1182-9.
    View in: PubMed
    Score: 0.008
  11. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem. 1998 May 15; 273(20):12101-8.
    View in: PubMed
    Score: 0.007
  12. The basic helix-loop-helix protein BETA2 interacts with p300 to coordinate differentiation of secretin-expressing enteroendocrine cells. Genes Dev. 1998 Mar 15; 12(6):820-30.
    View in: PubMed
    Score: 0.007
  13. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997 Sep 11; 389(6647):194-8.
    View in: PubMed
    Score: 0.007
  14. Identification of a novel sonic hedgehog response element in the chicken ovalbumin upstream promoter-transcription factor II promoter. Mol Endocrinol. 1997 Sep; 11(10):1458-66.
    View in: PubMed
    Score: 0.007
  15. Interferon regulatory factors and TFIIB cooperatively regulate interferon-responsive promoter activity in vivo and in vitro. Mol Cell Biol. 1996 Nov; 16(11):6313-24.
    View in: PubMed
    Score: 0.007
  16. Effect of estrogen on gene expression in the chick oviduct. J Biol Chem. 1976 Apr 10; 251(7):1960-8.
    View in: PubMed
    Score: 0.006
  17. Specific mutations in the ligand binding domain selectively abolish the silencing function of human thyroid hormone receptor beta. Proc Natl Acad Sci U S A. 1995 Dec 05; 92(25):11691-5.
    View in: PubMed
    Score: 0.006
  18. The mouse bone morphogenetic protein-4 gene. Analysis of promoter utilization in fetal rat calvarial osteoblasts and regulation by COUP-TFI orphan receptor. J Biol Chem. 1995 Nov 24; 270(47):28364-73.
    View in: PubMed
    Score: 0.006
  19. Enhancement of human estrogen receptor activity by SPT6: a potential coactivator. Mol Endocrinol. 1995 Jan; 9(1):34-43.
    View in: PubMed
    Score: 0.006
  20. Expression of the trans-active factors that stimulate insulin control element-mediated activity appear to precede insulin gene transcription. J Biol Chem. 1994 Jan 28; 269(4):2452-60.
    View in: PubMed
    Score: 0.005
  21. Transcriptional activation by the estrogen receptor requires a conformational change in the ligand binding domain. Mol Endocrinol. 1993 Oct; 7(10):1266-74.
    View in: PubMed
    Score: 0.005
  22. Modulation of progesterone receptor binding to progesterone response elements by positioned nucleosomes. Biochemistry. 1992 Feb 11; 31(5):1570-8.
    View in: PubMed
    Score: 0.005
  23. Identification by exonuclease footprinting of a distal promoter-binding protein from HeLa cell extracts. DNA. 1985 Jun; 4(3):233-40.
    View in: PubMed
    Score: 0.003
  24. Effect of estrogen on gene expression in the chick oviduct. Kinetics of initiation of in vitro transcription on chromatin. J Biol Chem. 1976 Feb 25; 251(4):1137-46.
    View in: PubMed
    Score: 0.002
  25. Effect of estrogen on gene expression in the chick oviduct. Correlation between nuclear-bound estrogen receptor and chromatin initiation site for transcription. J Biol Chem. 1976 Jan 25; 251(2):516-23.
    View in: PubMed
    Score: 0.002
  26. Effects of estrogen on gene expression in chick oviduct: nuclear receptor levels and initiation of transcription. Proc Natl Acad Sci U S A. 1975 Nov; 72(11):4228-32.
    View in: PubMed
    Score: 0.002
  27. Effect of estrogen on gene expression in the chick oviduct. V. Changes in the number of RNA polymerase binding and initiation sites in chromatin. J Biol Chem. 1975 Jul 10; 250(13):5175-82.
    View in: PubMed
    Score: 0.001
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.