Connection

GUILLERMINA LOZANO to Tumor Suppressor Protein p53

This is a "connection" page, showing publications GUILLERMINA LOZANO has written about Tumor Suppressor Protein p53.
  1. p53R172H and p53R245W Hotspot Mutations Drive Distinct Transcriptomes in Mouse Mammary Tumors Through a Convergent Transcriptional Mediator. Cancer Res Commun. 2024 Aug 01; 4(8):1991-2007.
    View in: PubMed
    Score: 0.393
  2. Triple-negative breast tumors are dependent on mutant p53 for growth and survival. Proc Natl Acad Sci U S A. 2023 08 22; 120(34):e2308807120.
    View in: PubMed
    Score: 0.368
  3. Tissue specificity and spatio-temporal dynamics of the p53 transcriptional program. Cell Death Differ. 2023 04; 30(4):897-905.
    View in: PubMed
    Score: 0.355
  4. p53 Activation Paradoxically Causes Liver Cancer. Cancer Res. 2022 08 16; 82(16):2824-2825.
    View in: PubMed
    Score: 0.343
  5. Differential Gain-of-Function Activity of Three p53 Hotspot Mutants In Vivo. Cancer Res. 2022 05 16; 82(10):1926-1936.
    View in: PubMed
    Score: 0.337
  6. p53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo. Proc Natl Acad Sci U S A. 2020 09 22; 117(38):23663-23673.
    View in: PubMed
    Score: 0.300
  7. p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev. 2020 09 01; 34(17-18):1128-1146.
    View in: PubMed
    Score: 0.300
  8. Transient enhancement of p53 activity protects from radiation-induced gastrointestinal toxicity. Proc Natl Acad Sci U S A. 2019 08 27; 116(35):17429-17437.
    View in: PubMed
    Score: 0.279
  9. Restoring p53 in cancer: the promises and the challenges. J Mol Cell Biol. 2019 07 19; 11(7):615-619.
    View in: PubMed
    Score: 0.277
  10. Somatic Trp53 mutations differentially drive breast cancer and evolution of metastases. Nat Commun. 2018 09 27; 9(1):3953.
    View in: PubMed
    Score: 0.262
  11. Daxx Functions Are p53-Independent In Vivo. Mol Cancer Res. 2018 10; 16(10):1523-1529.
    View in: PubMed
    Score: 0.257
  12. Synergistic and additive effect of retinoic acid in circumventing resistance to p53 restoration. Proc Natl Acad Sci U S A. 2018 02 27; 115(9):2198-2203.
    View in: PubMed
    Score: 0.251
  13. SNPing away at mutant p53 activities. Genes Dev. 2018 02 01; 32(3-4):195-196.
    View in: PubMed
    Score: 0.251
  14. Mutant p53 partners in crime. Cell Death Differ. 2018 01; 25(1):161-168.
    View in: PubMed
    Score: 0.246
  15. Integrative genome analysis of somatic p53 mutant osteosarcomas identifies Ets2-dependent regulation of small nucleolar RNAs by mutant p53 protein. Genes Dev. 2017 09 15; 31(18):1847-1857.
    View in: PubMed
    Score: 0.244
  16. The p53 inhibitor Mdm4 cooperates with multiple genetic lesions in tumourigenesis. J Pathol. 2017 03; 241(4):501-510.
    View in: PubMed
    Score: 0.233
  17. The Enigma of p53. Cold Spring Harb Symp Quant Biol. 2016; 81:37-40.
    View in: PubMed
    Score: 0.231
  18. Attenuating the p53 Pathway in Human Cancers: Many Means to the Same End. Cold Spring Harb Perspect Med. 2016 08 01; 6(8).
    View in: PubMed
    Score: 0.226
  19. Distinct downstream targets manifest p53-dependent pathologies in mice. Oncogene. 2016 11 03; 35(44):5713-5721.
    View in: PubMed
    Score: 0.221
  20. p53 Activity Dominates That of p73 upon Mdm4 Loss in Development and Tumorigenesis. Mol Cancer Res. 2016 Jan; 14(1):56-65.
    View in: PubMed
    Score: 0.214
  21. Mdm2 overexpression and p73 loss exacerbate genomic instability and dampen apoptosis, resulting in B-cell lymphoma. Oncogene. 2016 Jan 21; 35(3):358-65.
    View in: PubMed
    Score: 0.207
  22. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev. 2014 Aug 15; 28(16):1739-51.
    View in: PubMed
    Score: 0.197
  23. Tissue-specific and age-dependent effects of global Mdm2 loss. J Pathol. 2014 Aug; 233(4):380-91.
    View in: PubMed
    Score: 0.195
  24. Dissecting the p53-Mdm2 feedback loop in vivo: uncoupling the role in p53 stability and activity. Oncotarget. 2014 Mar 15; 5(5):1149-56.
    View in: PubMed
    Score: 0.191
  25. The Mdm network and its regulation of p53 activities: a rheostat of cancer risk. Hum Mutat. 2014 Jun; 35(6):728-37.
    View in: PubMed
    Score: 0.191
  26. Therapeutic efficacy of p53 restoration in Mdm2-overexpressing tumors. Mol Cancer Res. 2014 Jun; 12(6):901-11.
    View in: PubMed
    Score: 0.191
  27. The mutant p53 mouse as a pre-clinical model. Oncogene. 2013 Sep 12; 32(37):4325-30.
    View in: PubMed
    Score: 0.177
  28. Che-ating death: CHE1/AATF protects from p53-mediated apoptosis. EMBO J. 2012 Oct 17; 31(20):3951-3.
    View in: PubMed
    Score: 0.172
  29. Multiple stress signals activate mutant p53 in vivo. Cancer Res. 2011 Dec 01; 71(23):7168-75.
    View in: PubMed
    Score: 0.162
  30. The ups and downs of p53 regulation in hematopoietic stem cells. Cell Cycle. 2011 Oct 01; 10(19):3257-62.
    View in: PubMed
    Score: 0.162
  31. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell. 2010 Nov 05; 7(5):606-17.
    View in: PubMed
    Score: 0.152
  32. Regulation of tissue- and stimulus-specific cell fate decisions by p53 in vivo. J Pathol. 2011 Jan; 223(2):127-36.
    View in: PubMed
    Score: 0.151
  33. Building p53. Genes Dev. 2010 Oct 15; 24(20):2229-32.
    View in: PubMed
    Score: 0.151
  34. Spontaneous tumorigenesis in mice overexpressing the p53-negative regulator Mdm4. Cancer Res. 2010 Sep 15; 70(18):7148-54.
    View in: PubMed
    Score: 0.150
  35. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 2010 Jan; 17(1):93-102.
    View in: PubMed
    Score: 0.143
  36. Mouse models of p53 functions. Cold Spring Harb Perspect Biol. 2010 Apr; 2(4):a001115.
    View in: PubMed
    Score: 0.142
  37. 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer. 2009 11; 9(11):831-41.
    View in: PubMed
    Score: 0.140
  38. p53 and MDM2: antagonists or partners in crime? Cancer Cell. 2009 Mar 03; 15(3):161-2.
    View in: PubMed
    Score: 0.135
  39. The intestinal epithelium compensates for p53-mediated cell death and guarantees organismal survival. Cell Death Differ. 2008 Nov; 15(11):1772-81.
    View in: PubMed
    Score: 0.129
  40. Mdm2 and Mdm4 loss regulates distinct p53 activities. Mol Cancer Res. 2008 Jun; 6(6):947-54.
    View in: PubMed
    Score: 0.128
  41. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev. 2008 May 15; 22(10):1337-44.
    View in: PubMed
    Score: 0.128
  42. The p53-Mdm2 network in progenitor cell expansion during mouse postnatal development. J Pathol. 2007 Dec; 213(4):360-8.
    View in: PubMed
    Score: 0.124
  43. Loss of Mdm4 results in p53-dependent dilated cardiomyopathy. Circulation. 2007 Jun 12; 115(23):2925-30.
    View in: PubMed
    Score: 0.120
  44. A genetic mouse model for metastatic lung cancer with gender differences in survival. Oncogene. 2007 Oct 18; 26(48):6896-904.
    View in: PubMed
    Score: 0.119
  45. Crippling p53 activities via knock-in mutations in mouse models. Oncogene. 2007 Apr 02; 26(15):2177-84.
    View in: PubMed
    Score: 0.118
  46. The oncogenic roles of p53 mutants in mouse models. Curr Opin Genet Dev. 2007 Feb; 17(1):66-70.
    View in: PubMed
    Score: 0.116
  47. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ. 2006 Jun; 13(6):927-34.
    View in: PubMed
    Score: 0.112
  48. Regulation of the p53-MDM2 pathway by 14-3-3 sigma and other proteins. Semin Cancer Biol. 2006 Jun; 16(3):225-34.
    View in: PubMed
    Score: 0.110
  49. Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development. Proc Natl Acad Sci U S A. 2006 Feb 28; 103(9):3226-31.
    View in: PubMed
    Score: 0.110
  50. Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4. Mol Cell Biol. 2006 Jan; 26(1):192-8.
    View in: PubMed
    Score: 0.108
  51. Gankyrin: an intriguing name for a novel regulator of p53 and RB. Cancer Cell. 2005 Jul; 8(1):3-4.
    View in: PubMed
    Score: 0.105
  52. p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun. 2005 Jun 10; 331(3):834-42.
    View in: PubMed
    Score: 0.104
  53. What have animal models taught us about the p53 pathway? J Pathol. 2005 Jan; 205(2):206-20.
    View in: PubMed
    Score: 0.101
  54. Mutation at p53 serine 389 does not rescue the embryonic lethality in mdm2 or mdm4 null mice. Oncogene. 2004 Oct 07; 23(46):7644-50.
    View in: PubMed
    Score: 0.100
  55. A novel genetic modifier of p53, mop1, results in embryonic lethality. Mamm Genome. 2004 Jun; 15(6):415-23.
    View in: PubMed
    Score: 0.097
  56. Mutant p53 protects triple-negative breast adenocarcinomas from ferroptosis in vivo. Sci Adv. 2024 Feb 16; 10(7):eadk1835.
    View in: PubMed
    Score: 0.095
  57. p53R245W Mutation Fuels Cancer Initiation and Metastases in NASH-driven Liver Tumorigenesis. Cancer Res Commun. 2023 12 29; 3(12):2640-2652.
    View in: PubMed
    Score: 0.094
  58. Unique Transcriptional Profiles Underlie Osteosarcomagenesis Driven by Different p53 Mutants. Cancer Res. 2023 07 14; 83(14):2297-2311.
    View in: PubMed
    Score: 0.091
  59. Dimeric p53 Mutant Elicits Unique Tumor-Suppressive Activities through an Altered Metabolic Program. Cancer Discov. 2023 05 04; 13(5):1230-1249.
    View in: PubMed
    Score: 0.090
  60. Disrupting TP53 in mouse models of human cancers. Hum Mutat. 2003 Mar; 21(3):321-6.
    View in: PubMed
    Score: 0.089
  61. Omics analyses of a somatic Trp53R245W/+ breast cancer model identify cooperating driver events activating PI3K/AKT/mTOR signaling. Proc Natl Acad Sci U S A. 2022 Nov 08; 119(45):e2210618119.
    View in: PubMed
    Score: 0.087
  62. Modelling aggressive prostate cancers of young men in immune-competent mice, driven by isogenic Trp53 alterations and Pten loss. Cell Death Dis. 2022 09 08; 13(9):777.
    View in: PubMed
    Score: 0.086
  63. Is loss of p53 a driver of ductal carcinoma in situ progression? Br J Cancer. 2022 11; 127(10):1744-1754.
    View in: PubMed
    Score: 0.085
  64. Alterations of the Mdm2 C-Terminus Differentially Impact Its Function In Vivo. Cancer Res. 2022 04 01; 82(7):1313-1320.
    View in: PubMed
    Score: 0.084
  65. Conditional allele of mdm2 which encodes a p53 inhibitor. Genesis. 2002 Feb; 32(2):145-7.
    View in: PubMed
    Score: 0.083
  66. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet. 2001 Sep; 29(1):92-5.
    View in: PubMed
    Score: 0.080
  67. An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2. Oncogene. 2001 Jul 05; 20(30):4041-9.
    View in: PubMed
    Score: 0.079
  68. Wnt/?-catenin-mediated p53 suppression is indispensable for osteogenesis of mesenchymal progenitor cells. Cell Death Dis. 2021 05 21; 12(6):521.
    View in: PubMed
    Score: 0.079
  69. The Common Germline TP53-R337H Mutation Is Hypomorphic and Confers Incomplete Penetrance and Late Tumor Onset in a Mouse Model. Cancer Res. 2021 05 01; 81(9):2442-2456.
    View in: PubMed
    Score: 0.078
  70. The loss of mdm2 induces p53-mediated apoptosis. Oncogene. 2000 Mar 23; 19(13):1691-7.
    View in: PubMed
    Score: 0.073
  71. p53 sends nucleotides to repair DNA. Nature. 2000 Mar 02; 404(6773):24-5.
    View in: PubMed
    Score: 0.072
  72. Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation. Oncogene. 2000 Jan 20; 19(3):358-64.
    View in: PubMed
    Score: 0.072
  73. Identification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. Nat Commun. 2019 11 26; 10(1):5385.
    View in: PubMed
    Score: 0.071
  74. One step at a time. Mol Biol Cell. 2018 11 01; 29(22):2614-2615.
    View in: PubMed
    Score: 0.066
  75. Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc Natl Acad Sci U S A. 1998 Mar 17; 95(6):2834-7.
    View in: PubMed
    Score: 0.063
  76. A spontaneous model of spondyloarthropathies that develops bone loss and pathological bone formation: A process regulated by IL27RA-/- and mutant-p53. PLoS One. 2018; 13(3):e0193485.
    View in: PubMed
    Score: 0.063
  77. Mouse models dissect the role of p53 in cancer and development. Semin Cancer Biol. 1998; 8(5):337-44.
    View in: PubMed
    Score: 0.062
  78. The Li-Fraumeni syndrome: an inherited susceptibility to cancer. Mol Med Today. 1997 Sep; 3(9):390-5.
    View in: PubMed
    Score: 0.061
  79. Deletion of p21 cannot substitute for p53 loss in rescue of mdm2 null lethality. Nat Genet. 1997 Aug; 16(4):336-7.
    View in: PubMed
    Score: 0.061
  80. Differential activation of p53 targets in cells treated with ultraviolet radiation that undergo both apoptosis and growth arrest. Radiat Res. 1997 Aug; 148(2):115-22.
    View in: PubMed
    Score: 0.061
  81. The Regulation of Cellular Functions by the p53 Protein: Cellular Senescence. Cold Spring Harb Perspect Med. 2017 Feb 01; 7(2).
    View in: PubMed
    Score: 0.058
  82. Mutation of phosphoserine 389 affects p53 function in vivo. J Biol Chem. 1996 Nov 15; 271(46):29380-5.
    View in: PubMed
    Score: 0.058
  83. Lack of Immunomodulatory Interleukin-27 Enhances Oncogenic Properties of Mutant p53 In Vivo. Clin Cancer Res. 2016 08 01; 22(15):3876-83.
    View in: PubMed
    Score: 0.055
  84. Heterozygous p53(V172F) mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53. Oncogene. 2016 09 08; 35(36):4798-806.
    View in: PubMed
    Score: 0.055
  85. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53. Mol Cell. 2016 Jan 07; 61(1):68-83.
    View in: PubMed
    Score: 0.054
  86. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995 Nov 09; 378(6553):203-6.
    View in: PubMed
    Score: 0.054
  87. Mutant p53 accumulates in cycling and proliferating cells in the normal tissues of p53 R172H mutant mice. Oncotarget. 2015 Jul 20; 6(20):17968-80.
    View in: PubMed
    Score: 0.053
  88. Cyclin E restores p53 activity in contact-inhibited cells. Mol Cell Biol. 1995 Jul; 15(7):3926-33.
    View in: PubMed
    Score: 0.052
  89. NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress. J Biol Chem. 1994 Aug 05; 269(31):20067-74.
    View in: PubMed
    Score: 0.049
  90. Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity. Cell Rep. 2014 Jun 12; 7(5):1691-1703.
    View in: PubMed
    Score: 0.048
  91. The p53-Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes Dev. 2013 Sep 01; 27(17):1857-67.
    View in: PubMed
    Score: 0.046
  92. The tumor suppressor p53 regulates its own transcription. Mol Cell Biol. 1993 Jun; 13(6):3415-23.
    View in: PubMed
    Score: 0.045
  93. Mutant p53 prolongs NF-?B activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell. 2013 May 13; 23(5):634-46.
    View in: PubMed
    Score: 0.045
  94. Loss of PML cooperates with mutant p53 to drive more aggressive cancers in a gender-dependent manner. Cell Cycle. 2013 Jun 01; 12(11):1722-31.
    View in: PubMed
    Score: 0.045
  95. Grail as a molecular determinant for the functions of the tumor suppressor p53 in tumorigenesis. Cell Death Differ. 2013 May; 20(5):732-43.
    View in: PubMed
    Score: 0.044
  96. Molecular pathways: targeting Mdm2 and Mdm4 in cancer therapy. Clin Cancer Res. 2013 Jan 01; 19(1):34-41.
    View in: PubMed
    Score: 0.044
  97. The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans. Blood. 2012 Dec 20; 120(26):5118-27.
    View in: PubMed
    Score: 0.043
  98. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell. 2012 Jun 12; 21(6):793-806.
    View in: PubMed
    Score: 0.042
  99. Analysis of p53 mutants for transcriptional activity. Mol Cell Biol. 1991 Dec; 11(12):6067-74.
    View in: PubMed
    Score: 0.041
  100. Mutant p53 protein, master regulator of human malignancies: a report on the Fifth Mutant p53 Workshop. Cell Death Differ. 2012 Jan; 19(1):180-3.
    View in: PubMed
    Score: 0.041
  101. Mutant p53 disrupts role of ShcA protein in balancing Smad protein-dependent and -independent signaling activity of transforming growth factor-? (TGF-?). J Biol Chem. 2011 Dec 23; 286(51):44023-44034.
    View in: PubMed
    Score: 0.041
  102. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell. 2011 Jul 12; 20(1):79-91.
    View in: PubMed
    Score: 0.040
  103. Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc Natl Acad Sci U S A. 2011 Jul 19; 108(29):11995-2000.
    View in: PubMed
    Score: 0.040
  104. Rpl27a mutation in the sooty foot ataxia mouse phenocopies high p53 mouse models. J Pathol. 2011 Aug; 224(4):540-52.
    View in: PubMed
    Score: 0.040
  105. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. J Clin Invest. 2011 Mar; 121(3):893-904.
    View in: PubMed
    Score: 0.039
  106. Joint effects of germ-line TP53 mutation, MDM2 SNP309, and gender on cancer risk in family studies of Li-Fraumeni syndrome. Hum Genet. 2011 Jun; 129(6):663-73.
    View in: PubMed
    Score: 0.039
  107. Tissue-specific expression of p53 in transgenic mice is regulated by intron sequences. Mol Carcinog. 1991; 4(1):3-9.
    View in: PubMed
    Score: 0.038
  108. p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation. Pigment Cell Melanoma Res. 2010 Dec; 23(6):781-94.
    View in: PubMed
    Score: 0.038
  109. p53 status in stromal fibroblasts modulates tumor growth in an SDF1-dependent manner. Cancer Res. 2010 Dec 01; 70(23):9650-8.
    View in: PubMed
    Score: 0.038
  110. You can win by losing: p53 mutations in rhabdomyosarcomas. J Pathol. 2010 Oct; 222(2):124-8.
    View in: PubMed
    Score: 0.038
  111. A high-frequency regulatory polymorphism in the p53 pathway accelerates tumor development. Cancer Cell. 2010 Sep 14; 18(3):220-30.
    View in: PubMed
    Score: 0.038
  112. Effects of MDM2, MDM4 and TP53 codon 72 polymorphisms on cancer risk in a cohort study of carriers of TP53 germline mutations. PLoS One. 2010 May 26; 5(5):e10813.
    View in: PubMed
    Score: 0.037
  113. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities. Differentiation. 2009 Jun; 77(5):442-9.
    View in: PubMed
    Score: 0.034
  114. p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS One. 2008; 3(11):e3707.
    View in: PubMed
    Score: 0.033
  115. Mtbp haploinsufficiency in mice increases tumor metastasis. Oncogene. 2008 Mar 20; 27(13):1813-20.
    View in: PubMed
    Score: 0.031
  116. High levels of the p53 inhibitor MDM4 in head and neck squamous carcinomas. Hum Pathol. 2007 Oct; 38(10):1553-62.
    View in: PubMed
    Score: 0.030
  117. An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. J Clin Invest. 2007 Jul; 117(7):1893-901.
    View in: PubMed
    Score: 0.030
  118. Haploinsufficiency of Mdm2 and Mdm4 in tumorigenesis and development. Mol Cell Biol. 2007 Aug; 27(15):5479-85.
    View in: PubMed
    Score: 0.030
  119. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep. 2007 May; 8(5):497-503.
    View in: PubMed
    Score: 0.030
  120. p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci U S A. 2006 Dec 26; 103(52):19842-7.
    View in: PubMed
    Score: 0.029
  121. Li-Fraumeni syndrome: a p53 family affair. Cell Cycle. 2005 Jul; 4(7):865-7.
    View in: PubMed
    Score: 0.026
  122. p21 stability: linking chaperones to a cell cycle checkpoint. Cancer Cell. 2005 Feb; 7(2):113-4.
    View in: PubMed
    Score: 0.025
  123. Adenoviral E1A targets Mdm4 to stabilize tumor suppressor p53. Cancer Res. 2004 Dec 15; 64(24):9080-5.
    View in: PubMed
    Score: 0.025
  124. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell. 2004 Nov 24; 119(5):591-602.
    View in: PubMed
    Score: 0.025
  125. Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389. Mol Cell Biol. 2004 Oct; 24(20):8884-94.
    View in: PubMed
    Score: 0.025
  126. Germ line BAX alterations are infrequent in Li-Fraumeni syndrome. Cancer Epidemiol Biomarkers Prev. 2004 Aug; 13(8):1403-6.
    View in: PubMed
    Score: 0.025
  127. MDM2, an introduction. Mol Cancer Res. 2003 Dec; 1(14):993-1000.
    View in: PubMed
    Score: 0.023
  128. 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol Cell Biol. 2003 Oct; 23(20):7096-107.
    View in: PubMed
    Score: 0.023
  129. Lung cancer risk in germline p53 mutation carriers: association between an inherited cancer predisposition, cigarette smoking, and cancer risk. Hum Genet. 2003 Aug; 113(3):238-43.
    View in: PubMed
    Score: 0.023
  130. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell. 2003 Mar 21; 112(6):779-91.
    View in: PubMed
    Score: 0.022
  131. Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet. 2003 Apr; 72(4):975-83.
    View in: PubMed
    Score: 0.022
  132. Activities of wildtype and mutant p53 in suppression of homologous recombination as measured by a retroviral vector system. Mutat Res. 2003 Jan 28; 522(1-2):69-83.
    View in: PubMed
    Score: 0.022
  133. The Brn-3a POU family transcription factor stimulates p53 gene expression in human and mouse tumour cells. Neurosci Lett. 2002 Dec 06; 334(1):1-4.
    View in: PubMed
    Score: 0.022
  134. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci U S A. 2002 Nov 12; 99(23):14849-54.
    View in: PubMed
    Score: 0.022
  135. Mdm-2 binding and TAF(II)31 recruitment is regulated by hydrogen bond disruption between the p53 residues Thr18 and Asp21. Oncogene. 2002 Oct 10; 21(46):7100-13.
    View in: PubMed
    Score: 0.022
  136. EGFR suppresses p53 function by promoting p53 binding to DNA-PKcs: a noncanonical regulatory axis between EGFR and wild-type p53 in glioblastoma. Neuro Oncol. 2022 10 03; 24(10):1712-1725.
    View in: PubMed
    Score: 0.022
  137. p53 and Fas ligand are required for psoralen and UVA-induced apoptosis in mouse epidermal cells. Cell Death Differ. 2002 May; 9(5):549-60.
    View in: PubMed
    Score: 0.021
  138. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J Biol Chem. 2002 May 31; 277(22):19251-4.
    View in: PubMed
    Score: 0.021
  139. p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev. 2000 Sep 15; 14(18):2358-65.
    View in: PubMed
    Score: 0.019
  140. The p38MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53. Biochem Biophys Res Commun. 1999 Aug 02; 261(2):464-71.
    View in: PubMed
    Score: 0.017
  141. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J. 1999 Apr 01; 18(7):1805-14.
    View in: PubMed
    Score: 0.017
  142. Overproduction of MDM2 in vivo disrupts S phase independent of E2F1. Cell Growth Differ. 1999 Mar; 10(3):147-54.
    View in: PubMed
    Score: 0.017
  143. Effective treatment of early endobronchial cancer with regional administration of liposome-p53 complexes. J Natl Cancer Inst. 1998 Aug 05; 90(15):1130-7.
    View in: PubMed
    Score: 0.016
  144. MDM2 function. Biochim Biophys Acta. 1998 Apr 17; 1377(2):M55-9.
    View in: PubMed
    Score: 0.016
  145. Bcl-2 inhibits p53 nuclear import following DNA damage. Oncogene. 1997 Dec 04; 15(23):2767-72.
    View in: PubMed
    Score: 0.015
  146. mdm2 deletion does not alter growth characteristics of p53-deficient embryo fibroblasts. Oncogene. 1996 Oct 17; 13(8):1731-6.
    View in: PubMed
    Score: 0.014
  147. Dominance of wild-type p53-mediated transcriptional activation in breast epithelial cells. Oncogene. 1996 Sep 19; 13(6):1315-22.
    View in: PubMed
    Score: 0.014
  148. Characterization of a murine p53ser246 mutant equivalent to the human p53ser249 associated with hepatocellular carcinoma and aflatoxin exposure. Mol Carcinog. 1995 Jun; 13(2):104-11.
    View in: PubMed
    Score: 0.013
  149. USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nat Immunol. 2014 Jun; 15(6):562-70.
    View in: PubMed
    Score: 0.012
  150. SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene. 1993 Oct; 8(10):2805-12.
    View in: PubMed
    Score: 0.012
  151. A functionally inactive p53 Li-Fraumeni syndrome mutant. Oncogene. 1993 Feb; 8(2):299-306.
    View in: PubMed
    Score: 0.011
  152. Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation. Cell Death Differ. 2012 Aug; 19(8):1381-9.
    View in: PubMed
    Score: 0.010
  153. Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers. J Clin Invest. 2011 Mar; 121(3):851-65.
    View in: PubMed
    Score: 0.010
  154. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science. 1990 Aug 31; 249(4972):1049-51.
    View in: PubMed
    Score: 0.009
  155. Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene. 2010 Nov 18; 29(46):6125-37.
    View in: PubMed
    Score: 0.009
  156. A deficiency in Mdm2 binding protein inhibits Myc-induced B-cell proliferation and lymphomagenesis. Oncogene. 2010 Jun 03; 29(22):3287-96.
    View in: PubMed
    Score: 0.009
  157. p53-dependent senescence delays Emu-myc-induced B-cell lymphomagenesis. Oncogene. 2010 Mar 04; 29(9):1260-9.
    View in: PubMed
    Score: 0.009
  158. Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma. PLoS One. 2009; 4(4):e5401.
    View in: PubMed
    Score: 0.009
  159. Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos. Mol Cell Biol. 2007 May; 27(9):3405-16.
    View in: PubMed
    Score: 0.007
  160. HDM4 (HDMX) is widely expressed in adult pre-B acute lymphoblastic leukemia and is a potential therapeutic target. Mod Pathol. 2007 Jan; 20(1):54-62.
    View in: PubMed
    Score: 0.007
  161. Genetic mapping of a putative tumor suppressor locus that influences tumorigenesis and metastasis in mice. Genes Chromosomes Cancer. 2006 Jul; 45(7):668-75.
    View in: PubMed
    Score: 0.007
  162. Xenobiotic stress induces hepatomegaly and liver tumors via the nuclear receptor constitutive androstane receptor. Mol Endocrinol. 2005 Jun; 19(6):1646-53.
    View in: PubMed
    Score: 0.006
  163. A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell. 2001 Feb; 7(2):283-92.
    View in: PubMed
    Score: 0.005
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.