Connection

Co-Authors

This is a "connection" page, showing publications co-authored by JOHN D HAZLE and DAVID THOMAS ALFONSO FUENTES.
Connection Strength

2.626
  1. A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization. Radiol Artif Intell. 2019 Sep; 1(5).
    View in: PubMed
    Score: 0.174
  2. A compressed sensing approach to immobilized nanoparticle localization for superparamagnetic relaxometry. Phys Med Biol. 2019 09 23; 64(19):194001.
    View in: PubMed
    Score: 0.173
  3. Automated Volumetric Assessment of Hepatocellular Carcinoma Response to Sorafenib: A Pilot Study. J Comput Assist Tomogr. 2019 May/Jun; 43(3):499-506.
    View in: PubMed
    Score: 0.169
  4. A heterogeneous tissue model for treatment planning for magnetic resonance-guided laser interstitial thermal therapy. Int J Hyperthermia. 2018 11; 34(7):943-952.
    View in: PubMed
    Score: 0.155
  5. Gaussian process classification of superparamagnetic relaxometry data: Phantom study. Artif Intell Med. 2017 Oct; 82:47-59.
    View in: PubMed
    Score: 0.149
  6. Theoretical model for laser ablation outcome predictions in brain: calibration and validation on clinical MR thermometry images. Int J Hyperthermia. 2018 02; 34(1):101-111.
    View in: PubMed
    Score: 0.147
  7. Accelerated magnetic resonance thermometry in the presence of uncertainties. Phys Med Biol. 2017 01 07; 62(1):214-245.
    View in: PubMed
    Score: 0.143
  8. Kinetic Modeling and Constrained Reconstruction of Hyperpolarized [1-13C]-Pyruvate Offers Improved Metabolic Imaging of Tumors. Cancer Res. 2015 Nov 15; 75(22):4708-17.
    View in: PubMed
    Score: 0.132
  9. A model evaluation study for treatment planning of laser-induced thermal therapy. Int J Hyperthermia. 2015; 31(7):705-14.
    View in: PubMed
    Score: 0.131
  10. Generalised polynomial chaos-based uncertainty quantification for planning MRgLITT procedures. Int J Hyperthermia. 2013 Jun; 29(4):324-35.
    View in: PubMed
    Score: 0.112
  11. An inverse problem approach to recovery of in vivo nanoparticle concentrations from thermal image monitoring of MR-guided laser induced thermal therapy. Ann Biomed Eng. 2013 Jan; 41(1):100-11.
    View in: PubMed
    Score: 0.106
  12. SU-F-BRCD-08: Uncertainty Quantification by Generalized Polynomial Chaos for MR-Guided Laser Induced Thermal Therapy. Med Phys. 2012 Jun; 39(6Part20):3857.
    View in: PubMed
    Score: 0.105
  13. Kalman filtered MR temperature imaging for laser induced thermal therapies. IEEE Trans Med Imaging. 2012 Apr; 31(4):984-94.
    View in: PubMed
    Score: 0.101
  14. Magnetic resonance temperature imaging validation of a bioheat transfer model for laser-induced thermal therapy. Int J Hyperthermia. 2011; 27(5):453-64.
    View in: PubMed
    Score: 0.095
  15. Computational modeling and real-time control of patient-specific laser treatment of cancer. Ann Biomed Eng. 2009 Apr; 37(4):763-82.
    View in: PubMed
    Score: 0.083
  16. Multimodality annotated hepatocellular carcinoma data set including pre-?and post-TACE with imaging segmentation. Sci Data. 2023 01 18; 10(1):33.
    View in: PubMed
    Score: 0.055
  17. Machine learning-based texture analysis for differentiation of radiologically indeterminate small adrenal tumors on adrenal protocol CT scans. Abdom Radiol (NY). 2021 10; 46(10):4853-4863.
    View in: PubMed
    Score: 0.049
  18. Estimating Local Cellular Density in Glioma Using MR Imaging Data. AJNR Am J Neuroradiol. 2021 01; 42(1):102-108.
    View in: PubMed
    Score: 0.047
  19. Feasibility of Automated Volumetric Assessment of Large Hepatocellular Carcinomas' Responses to Transarterial Chemoembolization. Front Oncol. 2020; 10:572.
    View in: PubMed
    Score: 0.045
  20. Imaging-Based Algorithm for the Local Grading of Glioma. AJNR Am J Neuroradiol. 2020 03; 41(3):400-407.
    View in: PubMed
    Score: 0.045
  21. Hepatocellular carcinoma response to transcatheter arterial chemoembolisation using automatically generated pre-therapeutic tumour volumes by a random forest-based segmentation protocol. Clin Radiol. 2019 Dec; 74(12):974.e13-974.e20.
    View in: PubMed
    Score: 0.043
  22. Machine learning-based texture analysis for differentiation of large adrenal cortical tumours on CT. Clin Radiol. 2019 Oct; 74(10):818.e1-818.e7.
    View in: PubMed
    Score: 0.043
  23. Guiding the first biopsy in glioma patients using estimated Ki-67 maps derived from MRI: conventional versus advanced imaging. Neuro Oncol. 2019 03 18; 21(4):527-536.
    View in: PubMed
    Score: 0.042
  24. Role of Wnt/?-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma. 2018; 5:61-73.
    View in: PubMed
    Score: 0.040
  25. A methodology for thermal dose model parameter development using perioperative MRI. Int J Hyperthermia. 2018 09; 34(6):687-696.
    View in: PubMed
    Score: 0.038
  26. Referenceless magnetic resonance temperature imaging using Gaussian process modeling. Med Phys. 2017 Jul; 44(7):3545-3555.
    View in: PubMed
    Score: 0.037
  27. Performance Assessment for Brain MR Imaging Registration Methods. AJNR Am J Neuroradiol. 2017 May; 38(5):973-980.
    View in: PubMed
    Score: 0.036
  28. Robust phase unwrapping for MR temperature imaging using a magnitude-sorted list, multi-clustering algorithm. Magn Reson Med. 2015 Apr; 73(4):1662-8.
    View in: PubMed
    Score: 0.030
  29. Estimating nanoparticle optical absorption with magnetic resonance temperature imaging and bioheat transfer simulation. Int J Hyperthermia. 2014 Feb; 30(1):47-55.
    View in: PubMed
    Score: 0.029
  30. Design and initial evaluation of a treatment planning software system for MRI-guided laser ablation in the brain. Int J Comput Assist Radiol Surg. 2014 Jul; 9(4):659-67.
    View in: PubMed
    Score: 0.029
  31. SU-E-J-53: A Phantom Validation Study of a 3D Background Phase Model for MR Thermometry. Med Phys. 2012 Jun; 39(6Part6):3664.
    View in: PubMed
    Score: 0.026
  32. Dynamic Data-Driven Finite Element Models for Laser Treatment of Cancer. Numer Methods Partial Differ Equ. 2007 Apr 26; 23(4):904-922.
    View in: PubMed
    Score: 0.018
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.