Connection

Co-Authors

This is a "connection" page, showing publications co-authored by SHINYA YAMAMOTO and OGUZ KANCA.
Connection Strength

2.261
  1. Functional analysis of pathogenic variants in LAMB1-related leukoencephalopathy reveals genotype-phenotype correlations and suggests its role in glial cells. Hum Mol Genet. 2025 May 17; 34(11):990-999.
    View in: PubMed
    Score: 0.250
  2. De novo variants in CDKL1 and CDKL2 are associated with neurodevelopmental symptoms. Am J Hum Genet. 2025 Apr 03; 112(4):846-862.
    View in: PubMed
    Score: 0.247
  3. Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans. Nat Rev Genet. 2024 Jan; 25(1):46-60.
    View in: PubMed
    Score: 0.220
  4. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms. Elife. 2019 11 01; 8.
    View in: PubMed
    Score: 0.170
  5. De Novo Variants in WDR37 Are Associated with Epilepsy, Colobomas, Dysmorphism, Developmental Delay, Intellectual Disability, and Cerebellar Hypoplasia. Am J Hum Genet. 2019 08 01; 105(2):413-424.
    View in: PubMed
    Score: 0.167
  6. C-terminal frameshift variants in GPKOW are associated with a multisystemic X-linked disorder. Genet Med. 2025 Apr 09; 101429.
    View in: PubMed
    Score: 0.062
  7. Uncovering Phenotypic Expansion in AXIN2-Related Disorders through Precision Animal Modeling. medRxiv. 2025 Mar 01.
    View in: PubMed
    Score: 0.061
  8. De novo and inherited variants in DDX39B cause a novel neurodevelopmental syndrome. Brain. 2025 Feb 07.
    View in: PubMed
    Score: 0.061
  9. Resolution of SLC6A1 variable expressivity in a multi-generational family using deep clinical phenotyping and Drosophila models. medRxiv. 2024 Sep 28.
    View in: PubMed
    Score: 0.060
  10. Loss-of-function in RBBP5 results in a syndromic neurodevelopmental disorder associated with microcephaly. Genet Med. 2024 Nov; 26(11):101218.
    View in: PubMed
    Score: 0.059
  11. De novo variants in FRYL are associated with developmental delay, intellectual disability, and dysmorphic features. Am J Hum Genet. 2024 04 04; 111(4):742-760.
    View in: PubMed
    Score: 0.058
  12. Loss of the endoplasmic reticulum protein Tmem208 affects cell polarity, development, and viability. Proc Natl Acad Sci U S A. 2024 Feb 27; 121(9):e2322582121.
    View in: PubMed
    Score: 0.057
  13. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. Elife. 2023 Dec 11; 12.
    View in: PubMed
    Score: 0.057
  14. Rare de novo gain-of-function missense variants in DOT1L are associated with developmental delay and congenital anomalies. Am J Hum Genet. 2023 11 02; 110(11):1919-1937.
    View in: PubMed
    Score: 0.056
  15. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. medRxiv. 2023 Oct 02.
    View in: PubMed
    Score: 0.056
  16. A comprehensive Drosophila resource to identify key functional interactions between SARS-CoV-2 factors and host proteins. Cell Rep. 2023 08 29; 42(8):112842.
    View in: PubMed
    Score: 0.055
  17. Bi-allelic variants in INTS11 are associated with a complex neurological disorder. Am J Hum Genet. 2023 05 04; 110(5):774-789.
    View in: PubMed
    Score: 0.054
  18. De novo variants in MRTFB have gain-of-function activity in Drosophila and are associated with a novel neurodevelopmental phenotype with dysmorphic features. Genet Med. 2023 06; 25(6):100833.
    View in: PubMed
    Score: 0.054
  19. The recurrent de novo c.2011C>T missense variant in MTSS2 causes syndromic intellectual disability. Am J Hum Genet. 2022 Nov 03; 109(11):2092.
    View in: PubMed
    Score: 0.052
  20. De novo FZR1 loss-of-function variants cause developmental and epileptic encephalopathies. Brain. 2022 06 03; 145(5):1684-1697.
    View in: PubMed
    Score: 0.051
  21. Drosophila functional screening of de novo variants in autism uncovers damaging variants and facilitates discovery of rare neurodevelopmental diseases. Cell Rep. 2022 03 15; 38(11):110517.
    View in: PubMed
    Score: 0.050
  22. Loss of IRF2BPL impairs neuronal maintenance through excess Wnt signaling. Sci Adv. 2022 01 21; 8(3):eabl5613.
    View in: PubMed
    Score: 0.050
  23. TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. Am J Hum Genet. 2021 09 02; 108(9):1669-1691.
    View in: PubMed
    Score: 0.048
  24. Heterozygous loss-of-function variants significantly expand the phenotypes associated with loss of GDF11. Genet Med. 2021 10; 23(10):1889-1900.
    View in: PubMed
    Score: 0.048
  25. De novo mutations in TOMM70, a receptor of the mitochondrial import translocase, cause neurological impairment. Hum Mol Genet. 2020 06 03; 29(9):1568-1579.
    View in: PubMed
    Score: 0.044
  26. IRF2BPL Is Associated with Neurological Phenotypes. Am J Hum Genet. 2018 09 06; 103(3):456.
    View in: PubMed
    Score: 0.039
  27. IRF2BPL Is Associated with Neurological Phenotypes. Am J Hum Genet. 2018 08 02; 103(2):245-260.
    View in: PubMed
    Score: 0.039
  28. A gene-specific T2A-GAL4 library for Drosophila. Elife. 2018 03 22; 7.
    View in: PubMed
    Score: 0.038
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.