Connection

Co-Authors

This is a "connection" page, showing publications co-authored by CHAD SHAW and JAMES LUPSKI.
Connection Strength

3.687
  1. Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome. Genome Med. 2019 04 23; 11(1):25.
    View in: PubMed
    Score: 0.177
  2. Megabase Length Hypermutation Accompanies Human Structural Variation at 17p11.2. Cell. 2019 03 07; 176(6):1310-1324.e10.
    View in: PubMed
    Score: 0.175
  3. Predicting human genes susceptible to genomic instability associated with Alu/Alu-mediated rearrangements. Genome Res. 2018 08; 28(8):1228-1242.
    View in: PubMed
    Score: 0.167
  4. An Organismal CNV Mutator Phenotype Restricted to Early Human Development. Cell. 2017 02 23; 168(5):830-842.e7.
    View in: PubMed
    Score: 0.152
  5. Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. N Engl J Med. 2017 01 05; 376(1):21-31.
    View in: PubMed
    Score: 0.150
  6. A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics. Genome Med. 2016 Feb 02; 8(1):13.
    View in: PubMed
    Score: 0.142
  7. Multiallelic Positions in the Human Genome: Challenges for Genetic Analyses. Hum Mutat. 2016 Mar; 37(3):231-234.
    View in: PubMed
    Score: 0.141
  8. Erratum to: Somatic Mosaicism: Implications for Disease and Transmission Genetics. Trends Genet. 2016 02; 32(2):138.
    View in: PubMed
    Score: 0.140
  9. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet. 2015 Jul 15; 24(14):4061-77.
    View in: PubMed
    Score: 0.134
  10. Somatic mosaicism: implications for disease and transmission genetics. Trends Genet. 2015 Jul; 31(7):382-92.
    View in: PubMed
    Score: 0.134
  11. Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics. Am J Hum Genet. 2014 Oct 02; 95(4):345-59.
    View in: PubMed
    Score: 0.129
  12. Fusion of large-scale genomic knowledge and frequency data computationally prioritizes variants in epilepsy. PLoS Genet. 2013; 9(9):e1003797.
    View in: PubMed
    Score: 0.120
  13. Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles. Genome Res. 2013 Sep; 23(9):1383-94.
    View in: PubMed
    Score: 0.117
  14. Incidental copy-number variants identified by routine genome testing in a clinical population. Genet Med. 2013 Jan; 15(1):45-54.
    View in: PubMed
    Score: 0.111
  15. Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum Mol Genet. 2009 Jun 15; 18(12):2188-203.
    View in: PubMed
    Score: 0.088
  16. Oral curcumin mitigates the clinical and neuropathologic phenotype of the Trembler-J mouse: a potential therapy for inherited neuropathy. Am J Hum Genet. 2007 Sep; 81(3):438-53.
    View in: PubMed
    Score: 0.078
  17. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet. 2007 Apr; 80(4):633-49.
    View in: PubMed
    Score: 0.076
  18. Role of genomic architecture in PLP1 duplication causing Pelizaeus-Merzbacher disease. Hum Mol Genet. 2006 Jul 15; 15(14):2250-65.
    View in: PubMed
    Score: 0.073
  19. Small marker chromosomes in two patients with segmental aneusomy for proximal 17p. Hum Genet. 2004 Jun; 115(1):1-7.
    View in: PubMed
    Score: 0.063
  20. Sequencing individual genomes with recurrent genomic disorder deletions: an approach to characterize genes for autosomal recessive rare disease traits. Genome Med. 2022 09 30; 14(1):113.
    View in: PubMed
    Score: 0.056
  21. Integrated sequencing and array comparative genomic hybridization in familial Parkinson disease. Neurol Genet. 2020 Oct; 6(5):e498.
    View in: PubMed
    Score: 0.048
  22. Low-level parental somatic mosaic SNVs in exomes from a large cohort of trios with diverse suspected Mendelian conditions. Genet Med. 2020 11; 22(11):1768-1776.
    View in: PubMed
    Score: 0.048
  23. CNVs cause autosomal recessive genetic diseases with or without involvement of SNV/indels. Genet Med. 2020 10; 22(10):1633-1641.
    View in: PubMed
    Score: 0.048
  24. Reanalysis of Clinical Exome Sequencing Data. N Engl J Med. 2019 06 20; 380(25):2478-2480.
    View in: PubMed
    Score: 0.045
  25. Copy number variant and runs of homozygosity detection by microarrays enabled more precise molecular diagnoses in 11,020 clinical exome cases. Genome Med. 2019 05 17; 11(1):30.
    View in: PubMed
    Score: 0.044
  26. Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of cohesinopathies. Genet Med. 2019 03; 21(3):663-675.
    View in: PubMed
    Score: 0.042
  27. Identifying Genes Whose Mutant Transcripts Cause Dominant Disease Traits by Potential Gain-of-Function Alleles. Am J Hum Genet. 2018 08 02; 103(2):171-187.
    View in: PubMed
    Score: 0.042
  28. Prioritization of Candidate Genes for Congenital Diaphragmatic Hernia in a Critical Region on Chromosome 4p16 using a Machine-Learning Algorithm. J Pediatr Genet. 2018 Dec; 7(4):164-173.
    View in: PubMed
    Score: 0.042
  29. Use of Exome Sequencing for Infants in Intensive Care Units: Ascertainment of Severe Single-Gene Disorders and Effect on Medical Management. JAMA Pediatr. 2017 12 04; 171(12):e173438.
    View in: PubMed
    Score: 0.040
  30. Identification of novel candidate disease genes from de novo exonic copy number variants. Genome Med. 2017 09 21; 9(1):83.
    View in: PubMed
    Score: 0.040
  31. De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. 2017 04 06; 100(4):689.
    View in: PubMed
    Score: 0.038
  32. Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort. Nucleic Acids Res. 2017 02 28; 45(4):1633-1648.
    View in: PubMed
    Score: 0.038
  33. De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. 2017 Feb 02; 100(2):352-363.
    View in: PubMed
    Score: 0.038
  34. Identification of a RAI1-associated disease network through integration of exome sequencing, transcriptomics, and 3D genomics. Genome Med. 2016 11 01; 8(1):105.
    View in: PubMed
    Score: 0.037
  35. Molecular diagnostic experience of whole-exome sequencing in adult patients. Genet Med. 2016 07; 18(7):678-85.
    View in: PubMed
    Score: 0.035
  36. DNA REPAIR. Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science. 2015 Aug 14; 349(6249):742-7.
    View in: PubMed
    Score: 0.034
  37. Absence of heterozygosity due to template switching during replicative rearrangements. Am J Hum Genet. 2015 Apr 02; 96(4):555-64.
    View in: PubMed
    Score: 0.033
  38. Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Am J Hum Genet. 2014 Aug 07; 95(2):173-82.
    View in: PubMed
    Score: 0.032
  39. Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10,362 consecutive cases. Eur J Hum Genet. 2014 Aug; 22(8):969-78.
    View in: PubMed
    Score: 0.031
  40. TM4SF20 ancestral deletion and susceptibility to a pediatric disorder of early language delay and cerebral white matter hyperintensities. Am J Hum Genet. 2013 Aug 08; 93(2):197-210.
    View in: PubMed
    Score: 0.030
  41. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet. 2014 Jan; 22(1):79-87.
    View in: PubMed
    Score: 0.029
  42. NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits. Genome Res. 2013 Sep; 23(9):1395-409.
    View in: PubMed
    Score: 0.029
  43. Confounding by repetitive elements and CpG islands does not explain the association between hypomethylation and genomic instability. PLoS Genet. 2013; 9(2):e1003333.
    View in: PubMed
    Score: 0.029
  44. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today's genomic array era? Genet Med. 2013 Jun; 15(6):450-7.
    View in: PubMed
    Score: 0.028
  45. Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities. Eur J Hum Genet. 2013 Feb; 21(2):173-81.
    View in: PubMed
    Score: 0.028
  46. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome. PLoS Genet. 2012; 8(5):e1002692.
    View in: PubMed
    Score: 0.027
  47. Prenatal chromosomal microarray analysis in a diagnostic laboratory; experience with >1000 cases and review of the literature. Prenat Diagn. 2012 Apr; 32(4):351-61.
    View in: PubMed
    Score: 0.027
  48. Detection of =1Mb microdeletions and microduplications in a single cell using custom oligonucleotide arrays. Prenat Diagn. 2012 Jan; 32(1):10-20.
    View in: PubMed
    Score: 0.027
  49. Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes. Genome Res. 2011 Jan; 21(1):33-46.
    View in: PubMed
    Score: 0.025
  50. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010 Dec; 31(12):1326-42.
    View in: PubMed
    Score: 0.025
  51. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results. Am J Med Genet A. 2010 May; 152A(5):1111-26.
    View in: PubMed
    Score: 0.024
  52. Microarray-based comparative genomic hybridization using sex-matched reference DNA provides greater sensitivity for detection of sex chromosome imbalances than array-comparative genomic hybridization with sex-mismatched reference DNA. J Mol Diagn. 2009 May; 11(3):226-37.
    View in: PubMed
    Score: 0.022
  53. Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases. Prenat Diagn. 2009 Jan; 29(1):29-39.
    View in: PubMed
    Score: 0.022
  54. Genomic imbalances in neonates with birth defects: high detection rates by using chromosomal microarray analysis. Pediatrics. 2008 Dec; 122(6):1310-8.
    View in: PubMed
    Score: 0.022
  55. Identification of chromosome abnormalities in subtelomeric regions by microarray analysis: a study of 5,380 cases. Am J Med Genet A. 2008 Sep 01; 146A(17):2242-51.
    View in: PubMed
    Score: 0.021
  56. 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am J Hum Genet. 2008 Jan; 82(1):214-21.
    View in: PubMed
    Score: 0.020
  57. Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am J Med Genet A. 2007 Aug 01; 143A(15):1679-86.
    View in: PubMed
    Score: 0.020
  58. Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One. 2007 Mar 28; 2(3):e327.
    View in: PubMed
    Score: 0.019
  59. Evidence for involvement of TRE-2 (USP6) oncogene, low-copy repeat and acrocentric heterochromatin in two families with chromosomal translocations. Hum Genet. 2006 Sep; 120(2):227-37.
    View in: PubMed
    Score: 0.018
  60. Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet Med. 2005 Jul-Aug; 7(6):422-32.
    View in: PubMed
    Score: 0.017
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.