Connection

CHAD SHAW to Chromosome Aberrations

This is a "connection" page, showing publications CHAD SHAW has written about Chromosome Aberrations.
Connection Strength

1.537
  1. Interchromosomal template-switching as a novel molecular mechanism for imprinting perturbations associated with Temple syndrome. Genome Med. 2019 04 23; 11(1):25.
    View in: PubMed
    Score: 0.128
  2. Reliable detection of subchromosomal deletions and duplications using cell-based noninvasive prenatal testing. Prenat Diagn. 2018 12; 38(13):1069-1078.
    View in: PubMed
    Score: 0.124
  3. An Organismal CNV Mutator Phenotype Restricted to Early Human Development. Cell. 2017 02 23; 168(5):830-842.e7.
    View in: PubMed
    Score: 0.110
  4. Evidence for feasibility of fetal trophoblastic cell-based noninvasive prenatal testing. Prenat Diagn. 2016 Nov; 36(11):1009-1019.
    View in: PubMed
    Score: 0.107
  5. Comparison of three whole genome amplification methods for detection of genomic aberrations in single cells. Prenat Diagn. 2016 Sep; 36(9):823-30.
    View in: PubMed
    Score: 0.106
  6. Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics. Am J Hum Genet. 2014 Oct 02; 95(4):345-59.
    View in: PubMed
    Score: 0.093
  7. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today's genomic array era? Genet Med. 2013 Jun; 15(6):450-7.
    View in: PubMed
    Score: 0.082
  8. Recurrent deletions and reciprocal duplications of 10q11.21q11.23 including CHAT and SLC18A3 are likely mediated by complex low-copy repeats. Hum Mutat. 2012 Jan; 33(1):165-79.
    View in: PubMed
    Score: 0.076
  9. Array comparative genomic hybridization detects chromosomal abnormalities in hematological cancers that are not detected by conventional cytogenetics. J Mol Diagn. 2010 Sep; 12(5):670-9.
    View in: PubMed
    Score: 0.070
  10. Microarray-based comparative genomic hybridization using sex-matched reference DNA provides greater sensitivity for detection of sex chromosome imbalances than array-comparative genomic hybridization with sex-mismatched reference DNA. J Mol Diagn. 2009 May; 11(3):226-37.
    View in: PubMed
    Score: 0.064
  11. Genomic imbalances in neonates with birth defects: high detection rates by using chromosomal microarray analysis. Pediatrics. 2008 Dec; 122(6):1310-8.
    View in: PubMed
    Score: 0.062
  12. Identification of chromosome abnormalities in subtelomeric regions by microarray analysis: a study of 5,380 cases. Am J Med Genet A. 2008 Sep 01; 146A(17):2242-51.
    View in: PubMed
    Score: 0.061
  13. Validation of a targeted DNA microarray for the clinical evaluation of recurrent abnormalities in chronic lymphocytic leukemia. Am J Hematol. 2008 Jul; 83(7):540-6.
    View in: PubMed
    Score: 0.060
  14. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet. 2007 Apr; 80(4):633-49.
    View in: PubMed
    Score: 0.055
  15. Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization. Genet Med. 2006 Nov; 8(11):719-27.
    View in: PubMed
    Score: 0.054
  16. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 2006 Sep; 16(9):1136-48.
    View in: PubMed
    Score: 0.053
  17. Array-based comparative genomic hybridization analysis of recurrent chromosome 15q rearrangements. Am J Med Genet A. 2005 Dec 01; 139A(2):106-13.
    View in: PubMed
    Score: 0.051
  18. Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet Med. 2005 Jul-Aug; 7(6):422-32.
    View in: PubMed
    Score: 0.049
  19. Development of a comparative genomic hybridization microarray and demonstration of its utility with 25 well-characterized 1p36 deletions. Hum Mol Genet. 2003 Sep 01; 12(17):2145-52.
    View in: PubMed
    Score: 0.043
  20. Copy number variant and runs of homozygosity detection by microarrays enabled more precise molecular diagnoses in 11,020 clinical exome cases. Genome Med. 2019 05 17; 11(1):30.
    View in: PubMed
    Score: 0.032
  21. Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10,362 consecutive cases. Eur J Hum Genet. 2014 Aug; 22(8):969-78.
    View in: PubMed
    Score: 0.022
  22. Prenatal chromosomal microarray analysis in a diagnostic laboratory; experience with >1000 cases and review of the literature. Prenat Diagn. 2012 Apr; 32(4):351-61.
    View in: PubMed
    Score: 0.020
  23. Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am J Med Genet A. 2007 Aug 01; 143A(15):1679-86.
    View in: PubMed
    Score: 0.014
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.