Connection

Co-Authors

This is a "connection" page, showing publications co-authored by PAWEL STANKIEWICZ and WEIMIN BI.
Connection Strength

1.862
  1. Quantitative Assessment of Parental Somatic Mosaicism for Copy-Number Variant (CNV) Deletions. Curr Protoc Hum Genet. 2020 06; 106(1):e99.
    View in: PubMed
    Score: 0.191
  2. Parental somatic mosaicism for CNV deletions - A need for more sensitive and precise detection methods in clinical diagnostics settings. Genomics. 2020 09; 112(5):2937-2941.
    View in: PubMed
    Score: 0.190
  3. A clinical survey of mosaic single nucleotide variants in disease-causing genes detected by exome sequencing. Genome Med. 2019 07 26; 11(1):48.
    View in: PubMed
    Score: 0.180
  4. Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications. Eur J Hum Genet. 2015 Jul; 23(7):915-21.
    View in: PubMed
    Score: 0.129
  5. Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Am J Hum Genet. 2014 Aug 07; 95(2):173-82.
    View in: PubMed
    Score: 0.127
  6. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today's genomic array era? Genet Med. 2013 Jun; 15(6):450-7.
    View in: PubMed
    Score: 0.114
  7. Co-occurrence of recurrent duplications of the DiGeorge syndrome region on both chromosome 22 homologues due to inherited and de novo events. J Med Genet. 2012 Nov; 49(11):681-8.
    View in: PubMed
    Score: 0.112
  8. Small rare recurrent deletions and reciprocal duplications in 2q21.1, including brain-specific ARHGEF4 and GPR148. Hum Mol Genet. 2012 Aug 01; 21(15):3345-55.
    View in: PubMed
    Score: 0.109
  9. Detection of =1Mb microdeletions and microduplications in a single cell using custom oligonucleotide arrays. Prenat Diagn. 2012 Jan; 32(1):10-20.
    View in: PubMed
    Score: 0.107
  10. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010 Dec; 31(12):1326-42.
    View in: PubMed
    Score: 0.098
  11. Genes in a refined Smith-Magenis syndrome critical deletion interval on chromosome 17p11.2 and the syntenic region of the mouse. Genome Res. 2002 May; 12(5):713-28.
    View in: PubMed
    Score: 0.055
  12. Identification of novel candidate disease genes from de novo exonic copy number variants. Genome Med. 2017 09 21; 9(1):83.
    View in: PubMed
    Score: 0.040
  13. Erratum to: Haploinsufficiency of the E3 ubiquitin-protein ligase gene TRIP12 causes intellectual disability with or without autism spectrum disorders, speech delay, and dysmorphic features. Hum Genet. 2017 08; 136(8):1009-1011.
    View in: PubMed
    Score: 0.039
  14. Haploinsufficiency of the E3 ubiquitin-protein ligase gene TRIP12 causes intellectual disability with or without autism spectrum disorders, speech delay, and dysmorphic features. Hum Genet. 2017 04; 136(4):377-386.
    View in: PubMed
    Score: 0.038
  15. Mechanisms for Complex Chromosomal Insertions. PLoS Genet. 2016 Nov; 12(11):e1006446.
    View in: PubMed
    Score: 0.037
  16. 6q22.1 microdeletion and susceptibility to pediatric epilepsy. Eur J Hum Genet. 2015 Feb; 23(2):173-9.
    View in: PubMed
    Score: 0.031
  17. Delineation of candidate genes responsible for structural brain abnormalities in patients with terminal deletions of chromosome 6q27. Eur J Hum Genet. 2015 Jan; 23(1):54-60.
    View in: PubMed
    Score: 0.031
  18. Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10,362 consecutive cases. Eur J Hum Genet. 2014 Aug; 22(8):969-78.
    View in: PubMed
    Score: 0.031
  19. Fusion of large-scale genomic knowledge and frequency data computationally prioritizes variants in epilepsy. PLoS Genet. 2013; 9(9):e1003797.
    View in: PubMed
    Score: 0.030
  20. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet. 2014 Jan; 22(1):79-87.
    View in: PubMed
    Score: 0.029
  21. Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles. Genome Res. 2013 Sep; 23(9):1383-94.
    View in: PubMed
    Score: 0.029
  22. NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits. Genome Res. 2013 Sep; 23(9):1395-409.
    View in: PubMed
    Score: 0.029
  23. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell. 2011 Sep 16; 146(6):889-903.
    View in: PubMed
    Score: 0.026
  24. Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications. Hum Mol Genet. 2011 May 15; 20(10):1975-88.
    View in: PubMed
    Score: 0.025
  25. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet. 2007 Apr; 80(4):633-49.
    View in: PubMed
    Score: 0.019
  26. Structure and evolution of the Smith-Magenis syndrome repeat gene clusters, SMS-REPs. Genome Res. 2002 May; 12(5):729-38.
    View in: PubMed
    Score: 0.014
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.