Connection

RACHEL SCHIFF to Xenograft Model Antitumor Assays

This is a "connection" page, showing publications RACHEL SCHIFF has written about Xenograft Model Antitumor Assays.
  1. Trastuzumab-Resistant HER2+ Breast Cancer Cells Retain Sensitivity to Poly (ADP-Ribose) Polymerase (PARP) Inhibition. Mol Cancer Ther. 2018 05; 17(5):921-930.
    View in: PubMed
    Score: 0.116
  2. HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in HER2+ Breast Cancer. Clin Cancer Res. 2017 Sep 01; 23(17):5123-5134.
    View in: PubMed
    Score: 0.109
  3. Blockade of AP-1 Potentiates Endocrine Therapy and Overcomes Resistance. Mol Cancer Res. 2016 05; 14(5):470-81.
    View in: PubMed
    Score: 0.100
  4. Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Res. 2014 Sep 11; 16(5):430.
    View in: PubMed
    Score: 0.090
  5. Therapeutic potential of the dual EGFR/HER2 inhibitor AZD8931 in circumventing endocrine resistance. Breast Cancer Res Treat. 2014 Apr; 144(2):263-72.
    View in: PubMed
    Score: 0.087
  6. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013 Aug 01; 73(15):4885-97.
    View in: PubMed
    Score: 0.083
  7. Upregulation of mucin4 in ER-positive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2-targeted therapies. Breast Cancer Res Treat. 2012 Jul; 134(2):583-93.
    View in: PubMed
    Score: 0.077
  8. Imaging biomarkers predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer. Clin Cancer Res. 2009 Jul 15; 15(14):4712-21.
    View in: PubMed
    Score: 0.063
  9. Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts. Cancer Res. 2008 Sep 15; 68(18):7493-501.
    View in: PubMed
    Score: 0.060
  10. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res. 2008 Feb 01; 68(3):826-33.
    View in: PubMed
    Score: 0.057
  11. PKMYT1 Is a Marker of Treatment Response and a Therapeutic Target for CDK4/6 Inhibitor-Resistance in ER+ Breast Cancer. Mol Cancer Ther. 2024 Oct 01; 23(10):1494-1510.
    View in: PubMed
    Score: 0.045
  12. Selective CDK7 Inhibition Suppresses Cell Cycle Progression and MYC Signaling While Enhancing Apoptosis in Therapy-resistant Estrogen Receptor-positive Breast Cancer. Clin Cancer Res. 2024 May 01; 30(9):1889-1905.
    View in: PubMed
    Score: 0.044
  13. Therapeutic Targeting of Nemo-like Kinase in Primary and Acquired Endocrine-resistant Breast Cancer. Clin Cancer Res. 2021 05 01; 27(9):2648-2662.
    View in: PubMed
    Score: 0.035
  14. Therapeutic role of recurrent ESR1-CCDC170 gene fusions in breast cancer endocrine resistance. Breast Cancer Res. 2020 08 08; 22(1):84.
    View in: PubMed
    Score: 0.034
  15. Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nat Cell Biol. 2020 06; 22(6):701-715.
    View in: PubMed
    Score: 0.034
  16. The FBXW2-MSX2-SOX2 axis regulates stem cell property and drug resistance of cancer cells. Proc Natl Acad Sci U S A. 2019 10 08; 116(41):20528-20538.
    View in: PubMed
    Score: 0.032
  17. Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer. Nat Med. 2018 05; 24(4):505-511.
    View in: PubMed
    Score: 0.029
  18. GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer. Breast Cancer Res Treat. 2018 Jul; 170(2):279-292.
    View in: PubMed
    Score: 0.029
  19. Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2-ERa-GREB1 Transcriptional Axis. Cancer Res. 2018 02 01; 78(3):671-684.
    View in: PubMed
    Score: 0.028
  20. Identification of MYST3 as a novel epigenetic activator of ERa frequently amplified in breast cancer. Oncogene. 2017 05 18; 36(20):2910-2918.
    View in: PubMed
    Score: 0.026
  21. Upregulation of ER Signaling as an Adaptive Mechanism of Cell Survival in HER2-Positive Breast Tumors Treated with Anti-HER2 Therapy. Clin Cancer Res. 2015 Sep 01; 21(17):3995-4003.
    View in: PubMed
    Score: 0.024
  22. Photo activation of HPPH encapsulated in "Pocket" liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts. Int J Nanomedicine. 2015; 10:125-45.
    View in: PubMed
    Score: 0.023
  23. Sub-100nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. J Control Release. 2014 Oct 10; 191:90-97.
    View in: PubMed
    Score: 0.022
  24. Epigenetic reprogramming of HOXC10 in endocrine-resistant breast cancer. Sci Transl Med. 2014 Mar 26; 6(229):229ra41.
    View in: PubMed
    Score: 0.022
  25. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc Natl Acad Sci U S A. 2011 Mar 01; 108(9):3665-70.
    View in: PubMed
    Score: 0.018
  26. Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene. 2002 Oct 31; 21(50):7680-9.
    View in: PubMed
    Score: 0.010
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.