Connection

CINTIA DE PAIVA to Animals

This is a "connection" page, showing publications CINTIA DE PAIVA has written about Animals.
Connection Strength

2.116
  1. Inhibition of Cathepsin S in Autoimmune CD25KO Mouse Improves Sj?gren Disease-Like Lacrimal Gland Pathology. Invest Ophthalmol Vis Sci. 2024 Jul 01; 65(8):26.
    View in: PubMed
    Score: 0.052
  2. Age-Related Differences in the Mouse Corneal Epithelial Transcriptome and Their Impact on Corneal Wound Healing. Invest Ophthalmol Vis Sci. 2024 May 01; 65(5):21.
    View in: PubMed
    Score: 0.051
  3. TNF is a critical cytokine in age-related dry eye disease. Ocul Surf. 2023 Oct; 30:119-128.
    View in: PubMed
    Score: 0.049
  4. Effects of Cathepsin S Inhibition in the Age-Related Dry Eye Phenotype. Invest Ophthalmol Vis Sci. 2023 08 01; 64(11):7.
    View in: PubMed
    Score: 0.048
  5. Conditional deletion of CD25 in the corneal epithelium reveals sex differences in barrier disruption. Ocul Surf. 2023 Oct; 30:57-72.
    View in: PubMed
    Score: 0.048
  6. Heterochronic Parabiosis Causes Dacryoadenitis in Young Lacrimal Glands. Int J Mol Sci. 2023 Mar 03; 24(5).
    View in: PubMed
    Score: 0.047
  7. Ectopic lymphoid structures in the aged lacrimal glands. Clin Immunol. 2023 03; 248:109251.
    View in: PubMed
    Score: 0.047
  8. Gut-derived butyrate suppresses ocular surface inflammation. Sci Rep. 2022 03 16; 12(1):4512.
    View in: PubMed
    Score: 0.044
  9. Cathepsin S is a novel target for age-related dry eye. Exp Eye Res. 2022 01; 214:108895.
    View in: PubMed
    Score: 0.043
  10. Age-related changes in ocular mucosal tolerance: Lessons learned from gut and respiratory tract immunity. Immunology. 2021 09; 164(1):43-56.
    View in: PubMed
    Score: 0.041
  11. Modulation of Oxidative Stress and Inflammation in the Aged Lacrimal Gland. Am J Pathol. 2021 02; 191(2):294-308.
    View in: PubMed
    Score: 0.040
  12. Parity Attenuates Intraepithelial Corneal Sensory Nerve Loss in Female Mice. Int J Mol Sci. 2020 Jul 21; 21(14).
    View in: PubMed
    Score: 0.039
  13. The gut-eye-lacrimal gland-microbiome axis in Sj?gren Syndrome. Ocul Surf. 2020 04; 18(2):335-344.
    View in: PubMed
    Score: 0.037
  14. Dysbiosis Modulates Ocular Surface Inflammatory Response to Liposaccharide. Invest Ophthalmol Vis Sci. 2019 10 01; 60(13):4224-4233.
    View in: PubMed
    Score: 0.037
  15. Age-associated antigen-presenting cell alterations promote dry-eye inducing Th1 cells. Mucosal Immunol. 2019 07; 12(4):897-908.
    View in: PubMed
    Score: 0.035
  16. Reduced Corneal Innervation in the CD25 Null Model of Sj?gren Syndrome. Int J Mol Sci. 2018 Nov 30; 19(12).
    View in: PubMed
    Score: 0.035
  17. Suppression of Th1-Mediated Keratoconjunctivitis Sicca by Lifitegrast. J Ocul Pharmacol Ther. 2018 09; 34(7):543-549.
    View in: PubMed
    Score: 0.034
  18. Protective role of commensal bacteria in Sj?gren Syndrome. J Autoimmun. 2018 09; 93:45-56.
    View in: PubMed
    Score: 0.034
  19. Sj?gren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. Int J Mol Sci. 2018 Feb 13; 19(2).
    View in: PubMed
    Score: 0.033
  20. Reduced intraepithelial corneal nerve density and sensitivity accompany desiccating stress and aging in C57BL/6 mice. Exp Eye Res. 2018 04; 169:91-98.
    View in: PubMed
    Score: 0.033
  21. Inhibition of NLRP3 Inflammasome Pathway by Butyrate Improves Corneal Wound Healing in Corneal Alkali Burn. Int J Mol Sci. 2017 Mar 05; 18(3).
    View in: PubMed
    Score: 0.031
  22. Effects of Aging in Dry Eye. Int Ophthalmol Clin. 2017; 57(2):47-64.
    View in: PubMed
    Score: 0.031
  23. Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells. Mucosal Immunol. 2017 05; 10(3):743-756.
    View in: PubMed
    Score: 0.030
  24. Interferon-gamma deficiency protects against aging-related goblet cell loss. Oncotarget. 2016 10 04; 7(40):64605-64614.
    View in: PubMed
    Score: 0.030
  25. Dexamethasone Drug Eluting Nanowafers Control Inflammation in Alkali-Burned Corneas Associated With Dry Eye. Invest Ophthalmol Vis Sci. 2016 06 01; 57(7):3222-30.
    View in: PubMed
    Score: 0.029
  26. Inflammatory Response to Lipopolysaccharide on the Ocular Surface in a Murine Dry Eye Model. Invest Ophthalmol Vis Sci. 2016 05 01; 57(6):2443-51.
    View in: PubMed
    Score: 0.029
  27. Altered Mucosal Microbiome Diversity and Disease Severity in Sj?gren Syndrome. Sci Rep. 2016 Apr 18; 6:23561.
    View in: PubMed
    Score: 0.029
  28. MMP-8 Is Critical for Dexamethasone Therapy in Alkali-Burned Corneas Under Dry Eye Conditions. J Cell Physiol. 2016 11; 231(11):2506-16.
    View in: PubMed
    Score: 0.029
  29. Differential Effects of Dexamethasone and Doxycycline on Inflammation and MMP Production in Murine Alkali-Burned Corneas Associated with Dry Eye. Ocul Surf. 2016 04; 14(2):242-54.
    View in: PubMed
    Score: 0.029
  30. Sj?gren syndrome: what and where are we looking for? Curr Opin Ophthalmol. 2015 Nov; 26(6):517-25.
    View in: PubMed
    Score: 0.028
  31. Improvement of Outcome Measures of Dry Eye by a Novel Integrin Antagonist in the Murine Desiccating Stress Model. Invest Ophthalmol Vis Sci. 2015 Sep; 56(10):5888-95.
    View in: PubMed
    Score: 0.028
  32. Desiccating Stress-Induced MMP Production and Activity Worsens Wound Healing in Alkali-Burned Corneas. Invest Ophthalmol Vis Sci. 2015 Jul; 56(8):4908-18.
    View in: PubMed
    Score: 0.028
  33. Altered balance of interleukin-13/interferon-gamma contributes to lacrimal gland destruction and secretory dysfunction in CD25 knockout model of Sj?gren's syndrome. Arthritis Res Ther. 2015 Mar 10; 17:53.
    View in: PubMed
    Score: 0.027
  34. Desiccating stress-induced chemokine expression in the epithelium is dependent on upregulation of NKG2D/RAE-1 and release of IFN-? in experimental dry eye. J Immunol. 2014 Nov 15; 193(10):5264-72.
    View in: PubMed
    Score: 0.026
  35. Ocular surface disease and dacryoadenitis in aging C57BL/6 mice. Am J Pathol. 2014 Mar; 184(3):631-43.
    View in: PubMed
    Score: 0.025
  36. Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease. PLoS One. 2013; 8(11):e78508.
    View in: PubMed
    Score: 0.025
  37. CD8? cells regulate the T helper-17 response in an experimental murine model of Sj?gren syndrome. Mucosal Immunol. 2014 Mar; 7(2):417-27.
    View in: PubMed
    Score: 0.024
  38. T helper cytokines in dry eye disease. Exp Eye Res. 2013 Dec; 117:118-25.
    View in: PubMed
    Score: 0.024
  39. Dendritic cell-derived thrombospondin-1 is critical for the generation of the ocular surface Th17 response to desiccating stress. J Leukoc Biol. 2013 Dec; 94(6):1293-301.
    View in: PubMed
    Score: 0.024
  40. Resolvin E1 (RX-10001) reduces corneal epithelial barrier disruption and protects against goblet cell loss in a murine model of dry eye. Cornea. 2012 Nov; 31(11):1299-303.
    View in: PubMed
    Score: 0.023
  41. Deletion of interferon-? delays onset and severity of dacryoadenitis in CD25KO mice. Arthritis Res Ther. 2012 Nov 01; 14(6):R234.
    View in: PubMed
    Score: 0.023
  42. NK cells promote Th-17 mediated corneal barrier disruption in dry eye. PLoS One. 2012; 7(5):e36822.
    View in: PubMed
    Score: 0.022
  43. Disruption of TGF-? signaling improves ocular surface epithelial disease in experimental autoimmune keratoconjunctivitis sicca. PLoS One. 2011; 6(12):e29017.
    View in: PubMed
    Score: 0.022
  44. Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway. Exp Eye Res. 2012 Jan; 94(1):150-6.
    View in: PubMed
    Score: 0.022
  45. Homeostatic control of conjunctival mucosal goblet cells by NKT-derived IL-13. Mucosal Immunol. 2011 Jul; 4(4):397-408.
    View in: PubMed
    Score: 0.020
  46. Spontaneous autoimmune dacryoadenitis in aged CD25KO mice. Am J Pathol. 2010 Aug; 177(2):744-53.
    View in: PubMed
    Score: 0.020
  47. Age-related T-cell cytokine profile parallels corneal disease severity in Sjogren's syndrome-like keratoconjunctivitis sicca in CD25KO mice. Rheumatology (Oxford). 2010 Feb; 49(2):246-58.
    View in: PubMed
    Score: 0.019
  48. Essential role for c-Jun N-terminal kinase 2 in corneal epithelial response to desiccating stress. Arch Ophthalmol. 2009 Dec; 127(12):1625-31.
    View in: PubMed
    Score: 0.019
  49. IL-17 disrupts corneal barrier following desiccating stress. Mucosal Immunol. 2009 May; 2(3):243-53.
    View in: PubMed
    Score: 0.018
  50. Dry eye-induced conjunctival epithelial squamous metaplasia is modulated by interferon-gamma. Invest Ophthalmol Vis Sci. 2007 Jun; 48(6):2553-60.
    View in: PubMed
    Score: 0.016
  51. Apical corneal barrier disruption in experimental murine dry eye is abrogated by methylprednisolone and doxycycline. Invest Ophthalmol Vis Sci. 2006 Jul; 47(7):2847-56.
    View in: PubMed
    Score: 0.015
  52. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res. 2006 Sep; 83(3):526-35.
    View in: PubMed
    Score: 0.015
  53. Cell size correlates with phenotype and proliferative capacity in human corneal epithelial cells. Stem Cells. 2006 Feb; 24(2):368-75.
    View in: PubMed
    Score: 0.014
  54. Glands of Moll: history, current knowledge and their role in ocular surface homeostasis and disease. Prog Retin Eye Res. 2025 May; 106:101362.
    View in: PubMed
    Score: 0.014
  55. Dessicating stress triggers and exacerbates experimental ocular Graft-versus-host-disease. Ocul Surf. 2025 Jul; 37:236-246.
    View in: PubMed
    Score: 0.014
  56. Destructive and protective effects and therapeutic targets of IL-36 family cytokines in dry eye disease. Ocul Surf. 2025 Apr; 36:83-93.
    View in: PubMed
    Score: 0.013
  57. ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells. 2005; 23(1):63-73.
    View in: PubMed
    Score: 0.013
  58. CD4+ T cells drive corneal nerve damage but not epitheliopathy in an acute aqueous-deficient dry eye model. Proc Natl Acad Sci U S A. 2024 Nov 26; 121(48):e2407648121.
    View in: PubMed
    Score: 0.013
  59. Mouse Corneal Immune Cell Heterogeneity Revealed by Single-Cell RNA Sequencing. Invest Ophthalmol Vis Sci. 2024 Oct 01; 65(12):29.
    View in: PubMed
    Score: 0.013
  60. Changes in conjunctival mononuclear phagocytes and suppressive activity of regulatory macrophages in desiccation induced dry eye. Ocul Surf. 2024 Oct; 34:348-362.
    View in: PubMed
    Score: 0.013
  61. The Aging Lacrimal Gland of Female C57BL/6J Mice Exhibits Multinucleate Macrophage Infiltration Associated With Lipid Dysregulation. Invest Ophthalmol Vis Sci. 2024 Jun 03; 65(6):1.
    View in: PubMed
    Score: 0.013
  62. Effects of age on lacrimal gland bioactive lipids. Ocul Surf. 2024 Jul; 33:64-73.
    View in: PubMed
    Score: 0.013
  63. An ocular Th1 immune response promotes corneal nerve damage independently of the development of corneal epitheliopathy. J Neuroinflammation. 2023 May 22; 20(1):120.
    View in: PubMed
    Score: 0.012
  64. The First Transcriptomic Atlas of the Adult Lacrimal Gland Reveals Epithelial Complexity and Identifies Novel Progenitor Cells in Mice. Cells. 2023 05 21; 12(10).
    View in: PubMed
    Score: 0.012
  65. Induction of Innate Inflammatory Pathways in the Corneal Epithelium in the Desiccating Stress Dry Eye Model. Invest Ophthalmol Vis Sci. 2023 04 03; 64(4):8.
    View in: PubMed
    Score: 0.012
  66. Lacrimal Gland Epithelial Cells Shape Immune Responses through the Modulation of Inflammasomes and Lipid Metabolism. Int J Mol Sci. 2023 Feb 21; 24(5).
    View in: PubMed
    Score: 0.012
  67. Molecular mechanisms regulating wound repair: Evidence for paracrine signaling from corneal epithelial cells to fibroblasts and immune cells following transient epithelial cell treatment with Mitomycin C. Exp Eye Res. 2023 02; 227:109353.
    View in: PubMed
    Score: 0.012
  68. Spatial transcriptomics of the lacrimal gland features macrophage activity and epithelium metabolism as key alterations during chronic inflammation. Front Immunol. 2022; 13:1011125.
    View in: PubMed
    Score: 0.011
  69. Single-cell transcriptional profiling of murine conjunctival immune cells reveals distinct populations expressing homeostatic and regulatory genes. Mucosal Immunol. 2022 04; 15(4):620-628.
    View in: PubMed
    Score: 0.011
  70. Immune phenotype of the CD4+ T cells in the aged lymphoid organs and lacrimal glands. Geroscience. 2022 Aug; 44(4):2105-2128.
    View in: PubMed
    Score: 0.011
  71. Desiccation Induced Conjunctival Monocyte Recruitment and Activation - Implications for Keratoconjunctivitis. Front Immunol. 2021; 12:701415.
    View in: PubMed
    Score: 0.010
  72. Retinoid Regulation of Ocular Surface Innate Inflammation. Int J Mol Sci. 2021 Jan 22; 22(3).
    View in: PubMed
    Score: 0.010
  73. Rapamycin Eyedrops Increased CD4+Foxp3+ Cells and Prevented Goblet Cell Loss in the Aged Ocular Surface. Int J Mol Sci. 2020 Nov 24; 21(23).
    View in: PubMed
    Score: 0.010
  74. Calcineurin Inhibitor Voclosporin Preserves Corneal Barrier and Conjunctival Goblet Cells in Experimental Dry Eye. J Ocul Pharmacol Ther. 2020 11; 36(9):679-685.
    View in: PubMed
    Score: 0.010
  75. IL-33/ST2/IL-9/IL-9R signaling disrupts ocular surface barrier in allergic inflammation. Mucosal Immunol. 2020 11; 13(6):919-930.
    View in: PubMed
    Score: 0.010
  76. Immune - Goblet cell interaction in the conjunctiva. Ocul Surf. 2020 04; 18(2):326-334.
    View in: PubMed
    Score: 0.009
  77. Dose-dependent benzalkonium chloride toxicity imparts ocular surface epithelial changes with features of dry eye disease. Ocul Surf. 2020 01; 18(1):158-169.
    View in: PubMed
    Score: 0.009
  78. IL-27 signaling deficiency develops Th17-enhanced Th2-dominant inflammation in murine allergic conjunctivitis model. Allergy. 2019 05; 74(5):910-921.
    View in: PubMed
    Score: 0.009
  79. Goblet cell-produced retinoic acid suppresses CD86 expression and IL-12 production in bone marrow-derived cells. Int Immunol. 2018 09 25; 30(10):457-470.
    View in: PubMed
    Score: 0.009
  80. Goblet cell loss abrogates ocular surface immune tolerance. JCI Insight. 2018 02 08; 3(3).
    View in: PubMed
    Score: 0.008
  81. Goblet Cells Contribute to Ocular Surface Immune Tolerance-Implications for Dry Eye Disease. Int J Mol Sci. 2017 May 05; 18(5).
    View in: PubMed
    Score: 0.008
  82. Mitochondrial DNA oxidation induces imbalanced activity of NLRP3/NLRP6 inflammasomes by activation of caspase-8 and BRCC36 in dry eye. J Autoimmun. 2017 Jun; 80:65-76.
    View in: PubMed
    Score: 0.008
  83. Interferon-?-Induced Unfolded Protein Response in Conjunctival Goblet Cells as a Cause of Mucin Deficiency in Sj?gren Syndrome. Am J Pathol. 2016 06; 186(6):1547-58.
    View in: PubMed
    Score: 0.007
  84. Dexamethasone nanowafer as an effective therapy for dry eye disease. J Control Release. 2015 Sep 10; 213:168-174.
    View in: PubMed
    Score: 0.007
  85. IL-13 Stimulates Proliferation and Expression of Mucin and Immunomodulatory Genes in Cultured Conjunctival Goblet Cells. Invest Ophthalmol Vis Sci. 2015 Jul; 56(8):4186-97.
    View in: PubMed
    Score: 0.007
  86. Age-Related Conjunctival Disease in the C57BL/6.NOD-Aec1Aec2 Mouse Model of Sj?gren Syndrome Develops Independent of Lacrimal Dysfunction. Invest Ophthalmol Vis Sci. 2015 Apr; 56(4):2224-33.
    View in: PubMed
    Score: 0.007
  87. Macrophage Phenotype in the Ocular Surface of Experimental Murine Dry Eye Disease. Arch Immunol Ther Exp (Warsz). 2015 Aug; 63(4):299-304.
    View in: PubMed
    Score: 0.007
  88. A potential link between bacterial pathogens and allergic conjunctivitis by dendritic cells. Exp Eye Res. 2014 Mar; 120:118-26.
    View in: PubMed
    Score: 0.006
  89. Histochemical demonstration of phospholipid containing choline in the cytoplasm of murine decidual cells. Acta Anat (Basel). 1994; 150(2):119-26.
    View in: PubMed
    Score: 0.006
  90. Topical interferon-gamma neutralization prevents conjunctival goblet cell loss in experimental murine dry eye. Exp Eye Res. 2014 Jan; 118:117-24.
    View in: PubMed
    Score: 0.006
  91. Effect of desiccating stress on mouse meibomian gland function. Ocul Surf. 2014 Jan; 12(1):59-68.
    View in: PubMed
    Score: 0.006
  92. Morphologic alterations of the palpebral conjunctival epithelium in a dry eye model. Cornea. 2013 Apr; 32(4):483-90.
    View in: PubMed
    Score: 0.006
  93. Potential autocrine regulation of interleukin-33/ST2 signaling of dendritic cells in allergic inflammation. Mucosal Immunol. 2013 Sep; 6(5):921-30.
    View in: PubMed
    Score: 0.006
  94. A native-like corneal construct using donor corneal stroma for tissue engineering. PLoS One. 2012; 7(11):e49571.
    View in: PubMed
    Score: 0.006
  95. Autoantibodies contribute to the immunopathogenesis of experimental dry eye disease. Invest Ophthalmol Vis Sci. 2012 Apr 24; 53(4):2062-75.
    View in: PubMed
    Score: 0.006
  96. Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis. J Immunol. 2011 Oct 01; 187(7):3653-62.
    View in: PubMed
    Score: 0.005
  97. Desiccating stress induces CD4+ T-cell-mediated Sj?gren's syndrome-like corneal epithelial apoptosis via activation of the extrinsic apoptotic pathway by interferon-?. Am J Pathol. 2011 Oct; 179(4):1807-14.
    View in: PubMed
    Score: 0.005
  98. Interferon-? exacerbates dry eye-induced apoptosis in conjunctiva through dual apoptotic pathways. Invest Ophthalmol Vis Sci. 2011 Aug 09; 52(9):6279-85.
    View in: PubMed
    Score: 0.005
  99. Short ragweed pollen triggers allergic inflammation through Toll-like receptor 4-dependent thymic stromal lymphopoietin/OX40 ligand/OX40 signaling pathways. J Allergy Clin Immunol. 2011 Dec; 128(6):1318-1325.e2.
    View in: PubMed
    Score: 0.005
  100. Entrapment of conjunctival goblet cells by desiccation-induced cornification. Invest Ophthalmol Vis Sci. 2011 Jun 01; 52(6):3492-9.
    View in: PubMed
    Score: 0.005
  101. Pharmacological cholinergic blockade stimulates inflammatory cytokine production and lymphocytic infiltration in the mouse lacrimal gland. Invest Ophthalmol Vis Sci. 2011 May 16; 52(6):3221-7.
    View in: PubMed
    Score: 0.005
  102. Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay. Cornea. 2010 Sep; 29(9):1048-54.
    View in: PubMed
    Score: 0.005
  103. Desiccating stress promotion of Th17 differentiation by ocular surface tissues through a dendritic cell-mediated pathway. Invest Ophthalmol Vis Sci. 2010 Jun; 51(6):3083-91.
    View in: PubMed
    Score: 0.005
  104. TSLP and downstream molecules in experimental mouse allergic conjunctivitis. Invest Ophthalmol Vis Sci. 2010 Jun; 51(6):3076-82.
    View in: PubMed
    Score: 0.005
  105. Induction of Th17 differentiation by corneal epithelial-derived cytokines. J Cell Physiol. 2010 Jan; 222(1):95-102.
    View in: PubMed
    Score: 0.005
  106. Spontaneous T cell mediated keratoconjunctivitis in Aire-deficient mice. Br J Ophthalmol. 2009 Sep; 93(9):1260-4.
    View in: PubMed
    Score: 0.005
  107. Desiccating stress decreases apical corneal epithelial cell size--modulation by the metalloproteinase inhibitor doxycycline. Cornea. 2008 Sep; 27(8):935-40.
    View in: PubMed
    Score: 0.004
  108. Epithelial-immune cell interaction in dry eye. Cornea. 2008 Sep; 27 Suppl 1:S9-11.
    View in: PubMed
    Score: 0.004
  109. A putative role for RHAMM/HMMR as a negative marker of stem cell-containing population of human limbal epithelial cells. Stem Cells. 2008 Jun; 26(6):1609-19.
    View in: PubMed
    Score: 0.004
  110. Desiccating environmental stress exacerbates autoimmune lacrimal keratoconjunctivitis in non-obese diabetic mice. J Autoimmun. 2008 Jun; 30(4):212-21.
    View in: PubMed
    Score: 0.004
  111. Expression of Th-1 chemokines and chemokine receptors on the ocular surface of C57BL/6 mice: effects of desiccating stress. Invest Ophthalmol Vis Sci. 2007 Jun; 48(6):2561-9.
    View in: PubMed
    Score: 0.004
  112. Desiccating stress stimulates expression of matrix metalloproteinases by the corneal epithelium. Invest Ophthalmol Vis Sci. 2006 Aug; 47(8):3293-302.
    View in: PubMed
    Score: 0.004
  113. Expression and regulation of cornified envelope proteins in human corneal epithelium. Invest Ophthalmol Vis Sci. 2006 May; 47(5):1938-46.
    View in: PubMed
    Score: 0.004
  114. Desiccating stress induces T cell-mediated Sj?gren's Syndrome-like lacrimal keratoconjunctivitis. J Immunol. 2006 Apr 01; 176(7):3950-7.
    View in: PubMed
    Score: 0.004
  115. Matrix metalloproteinase-9 knockout confers resistance to corneal epithelial barrier disruption in experimental dry eye. Am J Pathol. 2005 Jan; 166(1):61-71.
    View in: PubMed
    Score: 0.003
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.