Connection

MING-JER TSAI to Molecular Sequence Data

This is a "connection" page, showing publications MING-JER TSAI has written about Molecular Sequence Data.
Connection Strength

0.650
  1. Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol. 2000 May; 20(9):3292-307.
    View in: PubMed
    Score: 0.029
  2. Chick ovalbumin upstream promoter-transcription factors (COUP-TFs): coming of age. Endocr Rev. 1997 Apr; 18(2):229-40.
    View in: PubMed
    Score: 0.024
  3. Molecular mechanisms of COUP-TF-mediated transcriptional repression: evidence for transrepression and active repression. Mol Cell Biol. 1996 May; 16(5):2332-40.
    View in: PubMed
    Score: 0.022
  4. BETA3, a novel helix-loop-helix protein, can act as a negative regulator of BETA2 and MyoD-responsive genes. Mol Cell Biol. 1996 Feb; 16(2):626-33.
    View in: PubMed
    Score: 0.022
  5. Chicken ovalbumin upstream promoter-transcription factors and their regulation. J Steroid Biochem Mol Biol. 1996 Jan; 56(1-6 Spec No):81-5.
    View in: PubMed
    Score: 0.022
  6. Molecular characterization of the rat insulin enhancer-binding complex 3b2. Cloning of a binding factor with putative helicase motifs. J Biol Chem. 1995 Sep 15; 270(37):21503-8.
    View in: PubMed
    Score: 0.021
  7. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 1995 Apr 15; 9(8):1009-19.
    View in: PubMed
    Score: 0.021
  8. Mechanisms for synergistic activation of thyroid hormone receptor and retinoid X receptor on different response elements. J Biol Chem. 1994 Dec 16; 269(50):31436-42.
    View in: PubMed
    Score: 0.020
  9. The yeast SIN3 gene product negatively regulates the activity of the human progesterone receptor and positively regulates the activities of GAL4 and the HAP1 activator. Mol Gen Genet. 1994 Dec 15; 245(6):724-33.
    View in: PubMed
    Score: 0.020
  10. Two distinct class A helix-loop-helix transcription factors, E2A and BETA1, form separate DNA binding complexes on the insulin gene E box. J Biol Chem. 1994 Oct 14; 269(41):25936-41.
    View in: PubMed
    Score: 0.020
  11. Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon. Proc Natl Acad Sci U S A. 1994 May 10; 91(10):4451-5.
    View in: PubMed
    Score: 0.019
  12. NR2F1 mutations cause optic atrophy with intellectual disability. Am J Hum Genet. 2014 Feb 06; 94(2):303-9.
    View in: PubMed
    Score: 0.019
  13. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994; 63:451-86.
    View in: PubMed
    Score: 0.019
  14. Developmental regulation of the orphan receptor COUP-TF II gene in spinal motor neurons. Development. 1994 Jan; 120(1):25-36.
    View in: PubMed
    Score: 0.019
  15. In vivo transcription of a progesterone-responsive gene is specifically inhibited by a triplex-forming oligonucleotide. Nucleic Acids Res. 1993 Jun 25; 21(12):2789-96.
    View in: PubMed
    Score: 0.018
  16. Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J Biol Chem. 1993 Feb 25; 268(6):4152-60.
    View in: PubMed
    Score: 0.018
  17. Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol. 1992 Sep; 12(9):4153-63.
    View in: PubMed
    Score: 0.017
  18. Studies on the mechanism of functional cooperativity between progesterone and estrogen receptors. J Biol Chem. 1991 Sep 05; 266(25):16684-90.
    View in: PubMed
    Score: 0.016
  19. Cell-specific and ubiquitous factors are responsible for the enhancer activity of the rat insulin II gene. J Biol Chem. 1991 Sep 05; 266(25):16708-14.
    View in: PubMed
    Score: 0.016
  20. Chicken ovalbumin upstream promoter transcription factor binds to a negative regulatory region in the human immunodeficiency virus type 1 long terminal repeat. J Virol. 1991 Jun; 65(6):2853-60.
    View in: PubMed
    Score: 0.016
  21. The COUP-TFs compose a family of functionally related transcription factors. Gene Expr. 1991; 1(3):207-16.
    View in: PubMed
    Score: 0.015
  22. COUP-TF gene: a structure unique for the steroid/thyroid receptor superfamily. Nucleic Acids Res. 1990 Dec 11; 18(23):6857-62.
    View in: PubMed
    Score: 0.015
  23. Superactive estrogen receptors. Potent activators of gene expression. J Biol Chem. 1990 Jul 15; 265(20):11517-21.
    View in: PubMed
    Score: 0.015
  24. Mutagenesis of the rat insulin II 5'-flanking region defines sequences important for expression in HIT cells. Mol Cell Biol. 1989 Apr; 9(4):1784-9.
    View in: PubMed
    Score: 0.014
  25. Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol. 2008 Sep 16; 6(9):e227.
    View in: PubMed
    Score: 0.013
  26. Differential binding of the chicken ovalbumin upstream promoter (COUP) transcription factor to two different promoters. J Biol Chem. 1988 Sep 15; 263(26):13470-4.
    View in: PubMed
    Score: 0.013
  27. Cooperative interactions of steroid hormone receptors with their cognate response elements. Cold Spring Harb Symp Quant Biol. 1988; 53 Pt 2:829-33.
    View in: PubMed
    Score: 0.012
  28. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med. 2006 Jul 20; 355(3):270-80.
    View in: PubMed
    Score: 0.011
  29. Tbx19, a tissue-selective regulator of POMC gene expression. Proc Natl Acad Sci U S A. 2001 Jul 17; 98(15):8674-9.
    View in: PubMed
    Score: 0.008
  30. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell. 1999 Apr 02; 97(1):17-27.
    View in: PubMed
    Score: 0.007
  31. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997 Sep 11; 389(6647):194-8.
    View in: PubMed
    Score: 0.006
  32. A thyroid hormone receptor coactivator negatively regulated by the retinoblastoma protein. Proc Natl Acad Sci U S A. 1997 Aug 19; 94(17):9040-5.
    View in: PubMed
    Score: 0.006
  33. Steroid receptor induction of gene transcription: a two-step model. Proc Natl Acad Sci U S A. 1997 Jul 22; 94(15):7879-84.
    View in: PubMed
    Score: 0.006
  34. Specific mutations in the ligand binding domain selectively abolish the silencing function of human thyroid hormone receptor beta. Proc Natl Acad Sci U S A. 1995 Dec 05; 92(25):11691-5.
    View in: PubMed
    Score: 0.005
  35. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995 Nov 24; 270(5240):1354-7.
    View in: PubMed
    Score: 0.005
  36. The mouse bone morphogenetic protein-4 gene. Analysis of promoter utilization in fetal rat calvarial osteoblasts and regulation by COUP-TFI orphan receptor. J Biol Chem. 1995 Nov 24; 270(47):28364-73.
    View in: PubMed
    Score: 0.005
  37. A nuclear hormone receptor-associated protein that inhibits transactivation by the thyroid hormone and retinoic acid receptors. Proc Natl Acad Sci U S A. 1995 Oct 10; 92(21):9525-9.
    View in: PubMed
    Score: 0.005
  38. Isolation, characterization, and chromosomal localization of mouse and human COUP-TF I and II genes. Genomics. 1995 Sep 01; 29(1):240-6.
    View in: PubMed
    Score: 0.005
  39. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci U S A. 1995 Feb 28; 92(5):1535-9.
    View in: PubMed
    Score: 0.005
  40. Enhancement of human estrogen receptor activity by SPT6: a potential coactivator. Mol Endocrinol. 1995 Jan; 9(1):34-43.
    View in: PubMed
    Score: 0.005
  41. Negative regulation by the R2 element of the MHC class I enhancer in adenovirus-12 transformed cells correlates with high levels of COUP-TF binding. Oncogene. 1994 Aug; 9(8):2183-90.
    View in: PubMed
    Score: 0.005
  42. Repression of estrogen-dependent stimulation of the oxytocin gene by chicken ovalbumin upstream promoter transcription factor I. J Biol Chem. 1994 May 27; 269(21):15046-53.
    View in: PubMed
    Score: 0.005
  43. Expression of the trans-active factors that stimulate insulin control element-mediated activity appear to precede insulin gene transcription. J Biol Chem. 1994 Jan 28; 269(4):2452-60.
    View in: PubMed
    Score: 0.005
  44. Transcriptional activation by the estrogen receptor requires a conformational change in the ligand binding domain. Mol Endocrinol. 1993 Oct; 7(10):1266-74.
    View in: PubMed
    Score: 0.005
  45. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem. 1992 Sep 25; 267(27):19513-20.
    View in: PubMed
    Score: 0.004
  46. Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J Biol Chem. 1992 Sep 05; 267(25):17617-23.
    View in: PubMed
    Score: 0.004
  47. The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell. 1992 May 15; 69(4):703-13.
    View in: PubMed
    Score: 0.004
  48. Identification of cis- and trans-acting factors regulating the expression of the human insulin receptor gene. J Biol Chem. 1992 Mar 05; 267(7):4638-45.
    View in: PubMed
    Score: 0.004
  49. Modulation of progesterone receptor binding to progesterone response elements by positioned nucleosomes. Biochemistry. 1992 Feb 11; 31(5):1570-8.
    View in: PubMed
    Score: 0.004
  50. Identification of novel steroid-response elements. Gene Expr. 1992; 2(1):39-47.
    View in: PubMed
    Score: 0.004
  51. Mechanism of estrogen receptor-dependent transcription in a cell-free system. Mol Cell Biol. 1990 Dec; 10(12):6607-12.
    View in: PubMed
    Score: 0.004
  52. The progesterone receptor stimulates cell-free transcription by enhancing the formation of a stable preinitiation complex. Cell. 1990 Jan 26; 60(2):247-57.
    View in: PubMed
    Score: 0.004
  53. The chicken progesterone receptor A and B isoforms are products of an alternate translation initiation event. J Biol Chem. 1989 Aug 25; 264(24):14062-4.
    View in: PubMed
    Score: 0.003
  54. Multiple protein binding sites within the ovalbumin gene 5'-flanking region: isolation and characterization of sequence-specific binding proteins. Nucleic Acids Res. 1989 Aug 25; 17(16):6693-711.
    View in: PubMed
    Score: 0.003
  55. COUP transcription factor is a member of the steroid receptor superfamily. Nature. 1989 Jul 13; 340(6229):163-6.
    View in: PubMed
    Score: 0.003
  56. Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell. 1988 Oct 21; 55(2):361-9.
    View in: PubMed
    Score: 0.003
  57. Structure of the chromosomal chicken progesterone receptor gene. Proc Natl Acad Sci U S A. 1987 Dec; 84(23):8380-4.
    View in: PubMed
    Score: 0.003
  58. Deoxyribonuclease I sensitivity of the ovomucoid-ovoinhibitor gene complex in oviduct nuclei and relative location of CR1 repetitive sequences. Biochemistry. 1987 Oct 20; 26(21):6831-40.
    View in: PubMed
    Score: 0.003
  59. Sequence and expression of a functional chicken progesterone receptor. Mol Endocrinol. 1987 Aug; 1(8):517-25.
    View in: PubMed
    Score: 0.003
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.