Connection

MING-JER TSAI to Transcriptional Activation

This is a "connection" page, showing publications MING-JER TSAI has written about Transcriptional Activation.
Connection Strength

0.557
  1. Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature. 2018 04; 556(7700):249-254.
    View in: PubMed
    Score: 0.126
  2. The yeast SIN3 gene product negatively regulates the activity of the human progesterone receptor and positively regulates the activities of GAL4 and the HAP1 activator. Mol Gen Genet. 1994 Dec 15; 245(6):724-33.
    View in: PubMed
    Score: 0.100
  3. Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J Biol Chem. 1993 Feb 25; 268(6):4152-60.
    View in: PubMed
    Score: 0.088
  4. Mechanisms of transcriptional activation by steroid hormone receptors. J Cell Biochem. 1993 Feb; 51(2):151-6.
    View in: PubMed
    Score: 0.088
  5. Steroid receptor induction of gene transcription: a two-step model. Proc Natl Acad Sci U S A. 1997 Jul 22; 94(15):7879-84.
    View in: PubMed
    Score: 0.030
  6. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995 Nov 24; 270(5240):1354-7.
    View in: PubMed
    Score: 0.027
  7. A nuclear hormone receptor-associated protein that inhibits transactivation by the thyroid hormone and retinoic acid receptors. Proc Natl Acad Sci U S A. 1995 Oct 10; 92(21):9525-9.
    View in: PubMed
    Score: 0.026
  8. Orphan nuclear receptor small heterodimer partner, a novel corepressor for a basic helix-loop-helix transcription factor BETA2/neuroD. Mol Endocrinol. 2004 Apr; 18(4):776-90.
    View in: PubMed
    Score: 0.012
  9. Sequential recruitment of steroid receptor coactivator-1 (SRC-1) and p300 enhances progesterone receptor-dependent initiation and reinitiation of transcription from chromatin. Proc Natl Acad Sci U S A. 2001 Oct 23; 98(22):12426-31.
    View in: PubMed
    Score: 0.010
  10. Neuronal basic helix-loop-helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. J Neurosci. 2000 May 15; 20(10):3714-24.
    View in: PubMed
    Score: 0.009
  11. COUP-TF upregulates NGFI-A gene expression through an Sp1 binding site. Mol Cell Biol. 1999 Apr; 19(4):2734-45.
    View in: PubMed
    Score: 0.008
  12. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol. 1999 Feb; 19(2):1182-9.
    View in: PubMed
    Score: 0.008
  13. Distinct steady-state nuclear receptor coregulator complexes exist in vivo. Proc Natl Acad Sci U S A. 1998 Sep 29; 95(20):11697-702.
    View in: PubMed
    Score: 0.008
  14. Transcriptional activation by the estrogen receptor requires a conformational change in the ligand binding domain. Mol Endocrinol. 1993 Oct; 7(10):1266-74.
    View in: PubMed
    Score: 0.006
  15. Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J Biol Chem. 1992 Sep 05; 267(25):17617-23.
    View in: PubMed
    Score: 0.005
  16. Analysis of the mechanism of steroid hormone receptor-dependent gene activation in cell-free systems. Endocr Rev. 1992 Aug; 13(3):525-35.
    View in: PubMed
    Score: 0.005
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.