Connection

Co-Authors

This is a "connection" page, showing publications co-authored by CHRISTINE ENG and PENGFEI LIU.
Connection Strength

0.959
  1. Reanalysis of Clinical Exome Sequencing Data. N Engl J Med. 2019 06 20; 380(25):2478-2480.
    View in: PubMed
    Score: 0.179
  2. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014 Nov 12; 312(18):1870-9.
    View in: PubMed
    Score: 0.130
  3. De novo missense variant in the GTPase effector domain (GED) of DNM1L leads to static encephalopathy and seizures. Cold Spring Harb Mol Case Stud. 2019 06; 5(3).
    View in: PubMed
    Score: 0.045
  4. Copy number variant and runs of homozygosity detection by microarrays enabled more precise molecular diagnoses in 11,020 clinical exome cases. Genome Med. 2019 05 17; 11(1):30.
    View in: PubMed
    Score: 0.044
  5. Correction to: De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome. Genome Med. 2019 03 25; 11(1):16.
    View in: PubMed
    Score: 0.044
  6. De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome. Genome Med. 2019 02 28; 11(1):12.
    View in: PubMed
    Score: 0.044
  7. Biallelic loss of function variants in PPP1R21 cause a neurodevelopmental syndrome with impaired endocytic function. Hum Mutat. 2019 03; 40(3):267-280.
    View in: PubMed
    Score: 0.043
  8. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med. 2018 09 28; 10(1):74.
    View in: PubMed
    Score: 0.043
  9. Phenotypic expansion in DDX3X - a common cause of intellectual disability in females. Ann Clin Transl Neurol. 2018 Oct; 5(10):1277-1285.
    View in: PubMed
    Score: 0.042
  10. Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of cohesinopathies. Genet Med. 2019 03; 21(3):663-675.
    View in: PubMed
    Score: 0.042
  11. De Novo Missense Variants in TRAF7 Cause Developmental Delay, Congenital Anomalies, and Dysmorphic Features. Am J Hum Genet. 2018 07 05; 103(1):154-162.
    View in: PubMed
    Score: 0.042
  12. Use of Exome Sequencing for Infants in Intensive Care Units: Ascertainment of Severe Single-Gene Disorders and Effect on Medical Management. JAMA Pediatr. 2017 12 04; 171(12):e173438.
    View in: PubMed
    Score: 0.040
  13. Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Med. 2017 03 21; 9(1):26.
    View in: PubMed
    Score: 0.038
  14. The next generation of population-based spinal muscular atrophy carrier screening: comprehensive pan-ethnic SMN1 copy-number and sequence variant analysis by massively parallel sequencing. Genet Med. 2017 08; 19(8):936-944.
    View in: PubMed
    Score: 0.038
  15. Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. N Engl J Med. 2017 01 05; 376(1):21-31.
    View in: PubMed
    Score: 0.038
  16. De Novo Truncating Variants in SON Cause Intellectual Disability, Congenital Malformations, and Failure to Thrive. Am J Hum Genet. 2016 09 01; 99(3):720-727.
    View in: PubMed
    Score: 0.037
  17. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat Commun. 2016 Feb 18; 7:10713.
    View in: PubMed
    Score: 0.035
  18. Recurrent Muscle Weakness with Rhabdomyolysis, Metabolic Crises, and Cardiac Arrhythmia Due to Bi-allelic TANGO2 Mutations. Am J Hum Genet. 2016 Feb 04; 98(2):347-57.
    View in: PubMed
    Score: 0.035
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.