Connection

Co-Authors

This is a "connection" page, showing publications co-authored by CARLOS BACINO and JAMES LUPSKI.
Connection Strength

1.510
  1. An Organismal CNV Mutator Phenotype Restricted to Early Human Development. Cell. 2017 02 23; 168(5):830-842.e7.
    View in: PubMed
    Score: 0.152
  2. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet. 2015 Jul 15; 24(14):4061-77.
    View in: PubMed
    Score: 0.134
  3. Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum Mol Genet. 2009 Jun 15; 18(12):2188-203.
    View in: PubMed
    Score: 0.088
  4. CNVs cause autosomal recessive genetic diseases with or without involvement of SNV/indels. Genet Med. 2020 10; 22(10):1633-1641.
    View in: PubMed
    Score: 0.048
  5. Parental somatic mosaicism for CNV deletions - A need for more sensitive and precise detection methods in clinical diagnostics settings. Genomics. 2020 09; 112(5):2937-2941.
    View in: PubMed
    Score: 0.048
  6. Biallelic and De Novo Variants in DONSON Reveal a Clinical Spectrum of Cell Cycle-opathies with Microcephaly, Dwarfism and Skeletal Abnormalities. Am J Med Genet A. 2019 10; 179(10):2056-2066.
    View in: PubMed
    Score: 0.045
  7. Copy number variant and runs of homozygosity detection by microarrays enabled more precise molecular diagnoses in 11,020 clinical exome cases. Genome Med. 2019 05 17; 11(1):30.
    View in: PubMed
    Score: 0.044
  8. Phenotypic expansion in DDX3X - a common cause of intellectual disability in females. Ann Clin Transl Neurol. 2018 Oct; 5(10):1277-1285.
    View in: PubMed
    Score: 0.042
  9. Use of Exome Sequencing for Infants in Intensive Care Units: Ascertainment of Severe Single-Gene Disorders and Effect on Medical Management. JAMA Pediatr. 2017 12 04; 171(12):e173438.
    View in: PubMed
    Score: 0.040
  10. Identification of novel candidate disease genes from de novo exonic copy number variants. Genome Med. 2017 09 21; 9(1):83.
    View in: PubMed
    Score: 0.040
  11. Severe clinical phenotype due to an interstitial deletion of the short arm of chromosome 1: a brief review. Am J Med Genet. 1997 Aug 08; 71(2):189-93.
    View in: PubMed
    Score: 0.039
  12. Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially. PLoS Genet. 2017 Jul; 13(7):e1006905.
    View in: PubMed
    Score: 0.039
  13. De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. 2017 04 06; 100(4):689.
    View in: PubMed
    Score: 0.038
  14. Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Med. 2017 03 21; 9(1):26.
    View in: PubMed
    Score: 0.038
  15. De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. 2017 Feb 02; 100(2):352-363.
    View in: PubMed
    Score: 0.038
  16. Mechanisms for Complex Chromosomal Insertions. PLoS Genet. 2016 Nov; 12(11):e1006446.
    View in: PubMed
    Score: 0.037
  17. Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins. Hum Genet. 2016 May; 135(5):569-586.
    View in: PubMed
    Score: 0.036
  18. Recurrent Muscle Weakness with Rhabdomyolysis, Metabolic Crises, and Cardiac Arrhythmia Due to Bi-allelic TANGO2 Mutations. Am J Hum Genet. 2016 Feb 04; 98(2):347-57.
    View in: PubMed
    Score: 0.035
  19. Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders. Am J Hum Genet. 2014 Aug 07; 95(2):173-82.
    View in: PubMed
    Score: 0.032
  20. Whole-exome sequencing reveals GPIHBP1 mutations in infantile colitis with severe hypertriglyceridemia. J Pediatr Gastroenterol Nutr. 2014 Jul; 59(1):17-21.
    View in: PubMed
    Score: 0.032
  21. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2) gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome. PLoS Genet. 2014 Mar; 10(3):e1004258.
    View in: PubMed
    Score: 0.031
  22. Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10,362 consecutive cases. Eur J Hum Genet. 2014 Aug; 22(8):969-78.
    View in: PubMed
    Score: 0.031
  23. Fusion of large-scale genomic knowledge and frequency data computationally prioritizes variants in epilepsy. PLoS Genet. 2013; 9(9):e1003797.
    View in: PubMed
    Score: 0.030
  24. TM4SF20 ancestral deletion and susceptibility to a pediatric disorder of early language delay and cerebral white matter hyperintensities. Am J Hum Genet. 2013 Aug 08; 93(2):197-210.
    View in: PubMed
    Score: 0.030
  25. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur J Hum Genet. 2014 Jan; 22(1):79-87.
    View in: PubMed
    Score: 0.029
  26. NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits. Genome Res. 2013 Sep; 23(9):1395-409.
    View in: PubMed
    Score: 0.029
  27. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today's genomic array era? Genet Med. 2013 Jun; 15(6):450-7.
    View in: PubMed
    Score: 0.028
  28. Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities. Eur J Hum Genet. 2013 Feb; 21(2):173-81.
    View in: PubMed
    Score: 0.028
  29. Prenatal chromosomal microarray analysis in a diagnostic laboratory; experience with >1000 cases and review of the literature. Prenat Diagn. 2012 Apr; 32(4):351-61.
    View in: PubMed
    Score: 0.027
  30. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell. 2011 Sep 16; 146(6):889-903.
    View in: PubMed
    Score: 0.026
  31. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010 Dec; 31(12):1326-42.
    View in: PubMed
    Score: 0.025
  32. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results. Am J Med Genet A. 2010 May; 152A(5):1111-26.
    View in: PubMed
    Score: 0.024
  33. Microdeletions including YWHAE in the Miller-Dieker syndrome region on chromosome 17p13.3 result in facial dysmorphisms, growth restriction, and cognitive impairment. J Med Genet. 2009 Dec; 46(12):825-33.
    View in: PubMed
    Score: 0.022
  34. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet. 2008 Dec; 40(12):1466-71.
    View in: PubMed
    Score: 0.022
  35. Genomic imbalances in neonates with birth defects: high detection rates by using chromosomal microarray analysis. Pediatrics. 2008 Dec; 122(6):1310-8.
    View in: PubMed
    Score: 0.022
  36. Identification of chromosome abnormalities in subtelomeric regions by microarray analysis: a study of 5,380 cases. Am J Med Genet A. 2008 Sep 01; 146A(17):2242-51.
    View in: PubMed
    Score: 0.021
  37. Microarray-based CGH detects chromosomal mosaicism not revealed by conventional cytogenetics. Am J Med Genet A. 2007 Aug 01; 143A(15):1679-86.
    View in: PubMed
    Score: 0.020
  38. Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One. 2007 Mar 28; 2(3):e327.
    View in: PubMed
    Score: 0.019
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.