Connection

STEPHEN PFLUGFELDER to Dry Eye Syndromes

This is a "connection" page, showing publications STEPHEN PFLUGFELDER has written about Dry Eye Syndromes.
Connection Strength

32.718
  1. Changes in conjunctival mononuclear phagocytes and suppressive activity of regulatory macrophages in desiccation induced dry eye. Ocul Surf. 2024 Oct; 34:348-362.
    View in: PubMed
    Score: 0.727
  2. Dry eye disease and blinking behaviors: A narrative review of methodologies for measuring blink dynamics and inducing blink response. Ocul Surf. 2023 Jul; 29:166-174.
    View in: PubMed
    Score: 0.664
  3. Induction of Innate Inflammatory Pathways in the Corneal Epithelium in the Desiccating Stress Dry Eye Model. Invest Ophthalmol Vis Sci. 2023 04 03; 64(4):8.
    View in: PubMed
    Score: 0.657
  4. Non-invasive and objective tear film breakup detection on interference color images using convolutional neural networks. PLoS One. 2023; 18(3):e0282973.
    View in: PubMed
    Score: 0.654
  5. Anti-Inflammatories in the Treatment of Dry Eye Disease: A Review. J Ocul Pharmacol Ther. 2023 03; 39(2):89-101.
    View in: PubMed
    Score: 0.651
  6. Quantitative assessment of botulinum toxin injection on blink rate in blepharospasm. Orbit. 2023 Dec; 42(6):571-578.
    View in: PubMed
    Score: 0.643
  7. Non-Invasive Tear Break-Up Detection with the Kowa DR-1a and Its Relationship to Dry Eye Clinical Severity. Int J Mol Sci. 2022 Nov 25; 23(23).
    View in: PubMed
    Score: 0.641
  8. Nicotinic acetylcholine receptor stimulation: A new approach for stimulating tear secretion in dry eye disease. Ocul Surf. 2022 07; 25:58-64.
    View in: PubMed
    Score: 0.617
  9. Combined therapy of ocular surface disease with plasma rich in growth factors and scleral contact lenses. Ocul Surf. 2022 01; 23:162-168.
    View in: PubMed
    Score: 0.590
  10. Video Viewing Blink Rate in Normal and Dry Eyes. Eye Contact Lens. 2021 08 01; 47(8):442-444.
    View in: PubMed
    Score: 0.585
  11. Conjunctivochalasis and Tear Osmolarity Are Associated With Reduced Conjunctival Epithelial Thickness in Dry Eye. Am J Ophthalmol. 2021 07; 227:35-44.
    View in: PubMed
    Score: 0.566
  12. Inflammatory basis for dry eye disease flares. Exp Eye Res. 2020 12; 201:108294.
    View in: PubMed
    Score: 0.553
  13. Calcineurin Inhibitor Voclosporin Preserves Corneal Barrier and Conjunctival Goblet Cells in Experimental Dry Eye. J Ocul Pharmacol Ther. 2020 11; 36(9):679-685.
    View in: PubMed
    Score: 0.545
  14. Biological functions of tear film. Exp Eye Res. 2020 08; 197:108115.
    View in: PubMed
    Score: 0.541
  15. Regional Comparison of Goblet Cell Number and Area in Exposed and Covered Dry Eyes and Their Correlation with Tear MUC5AC. Sci Rep. 2020 02 19; 10(1):2933.
    View in: PubMed
    Score: 0.529
  16. Immune - Goblet cell interaction in the conjunctiva. Ocul Surf. 2020 04; 18(2):326-334.
    View in: PubMed
    Score: 0.525
  17. Goblet cell loss abrogates ocular surface immune tolerance. JCI Insight. 2018 02 08; 3(3).
    View in: PubMed
    Score: 0.460
  18. The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research. Ophthalmology. 2017 11; 124(11S):S4-S13.
    View in: PubMed
    Score: 0.451
  19. Goblet Cells Contribute to Ocular Surface Immune Tolerance-Implications for Dry Eye Disease. Int J Mol Sci. 2017 May 05; 18(5).
    View in: PubMed
    Score: 0.436
  20. Randomized Controlled Crossover Trial Comparing the Impact of Sham or Intranasal Tear Neurostimulation on Conjunctival Goblet Cell Degranulation. Am J Ophthalmol. 2017 May; 177:159-168.
    View in: PubMed
    Score: 0.432
  21. Intranasal Tear Neurostimulation: An Emerging Concept in the Treatment of Dry Eye. Int Ophthalmol Clin. 2017; 57(2):101-108.
    View in: PubMed
    Score: 0.426
  22. What We Have Learned From Animal Models of Dry Eye. Int Ophthalmol Clin. 2017; 57(2):109-118.
    View in: PubMed
    Score: 0.426
  23. LFA-1/ICAM-1 Interaction as a Therapeutic Target in Dry Eye Disease. J Ocul Pharmacol Ther. 2017 Jan/Feb; 33(1):5-12.
    View in: PubMed
    Score: 0.423
  24. Aqueous Tear Deficiency Increases Conjunctival Interferon-? (IFN-?) Expression and Goblet Cell Loss. Invest Ophthalmol Vis Sci. 2015 Nov; 56(12):7545-50.
    View in: PubMed
    Score: 0.393
  25. Corneal Sensitivity in Tear Dysfunction and its Correlation With Clinical Parameters and Blink Rate. Am J Ophthalmol. 2015 Nov; 160(5):858-866.e5.
    View in: PubMed
    Score: 0.386
  26. IL-13 Stimulates Proliferation and Expression of Mucin and Immunomodulatory Genes in Cultured Conjunctival Goblet Cells. Invest Ophthalmol Vis Sci. 2015 Jul; 56(8):4186-97.
    View in: PubMed
    Score: 0.384
  27. Effects of Dry Eye Therapies on Environmentally Induced Ocular Surface Disease. Am J Ophthalmol. 2015 Jul; 160(1):135-42.e1.
    View in: PubMed
    Score: 0.378
  28. Macrophage Phenotype in the Ocular Surface of Experimental Murine Dry Eye Disease. Arch Immunol Ther Exp (Warsz). 2015 Aug; 63(4):299-304.
    View in: PubMed
    Score: 0.376
  29. Mucosal environmental sensors in the pathogenesis of dry eye. Expert Rev Clin Immunol. 2014 Sep; 10(9):1137-40.
    View in: PubMed
    Score: 0.360
  30. New testing options for diagnosing and grading dry eye disease. Am J Ophthalmol. 2014 Jun; 157(6):1122-9.
    View in: PubMed
    Score: 0.350
  31. What causes dryness in Sj?gren's syndrome patients and how can it be targeted? Expert Rev Clin Immunol. 2014 Apr; 10(4):425-7.
    View in: PubMed
    Score: 0.349
  32. Topical interferon-gamma neutralization prevents conjunctival goblet cell loss in experimental murine dry eye. Exp Eye Res. 2014 Jan; 118:117-24.
    View in: PubMed
    Score: 0.344
  33. Tear meniscus dimensions in tear dysfunction and their correlation with clinical parameters. Am J Ophthalmol. 2014 Feb; 157(2):301-310.e1.
    View in: PubMed
    Score: 0.340
  34. T helper cytokines in dry eye disease. Exp Eye Res. 2013 Dec; 117:118-25.
    View in: PubMed
    Score: 0.338
  35. Factors predicting the ocular surface response to desiccating environmental stress. Invest Ophthalmol Vis Sci. 2013 May 07; 54(5):3325-32.
    View in: PubMed
    Score: 0.331
  36. Dry eye as a mucosal autoimmune disease. Int Rev Immunol. 2013 Feb; 32(1):19-41.
    View in: PubMed
    Score: 0.325
  37. Autoantibodies contribute to the immunopathogenesis of experimental dry eye disease. Invest Ophthalmol Vis Sci. 2012 Apr 24; 53(4):2062-75.
    View in: PubMed
    Score: 0.308
  38. Interferon-? exacerbates dry eye-induced apoptosis in conjunctiva through dual apoptotic pathways. Invest Ophthalmol Vis Sci. 2011 Aug 09; 52(9):6279-85.
    View in: PubMed
    Score: 0.293
  39. Entrapment of conjunctival goblet cells by desiccation-induced cornification. Invest Ophthalmol Vis Sci. 2011 Jun 01; 52(6):3492-9.
    View in: PubMed
    Score: 0.289
  40. Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay. Cornea. 2010 Sep; 29(9):1048-54.
    View in: PubMed
    Score: 0.274
  41. Post-LASIK tear dysfunction and dysesthesia. Ocul Surf. 2010 Jul; 8(3):135-45.
    View in: PubMed
    Score: 0.271
  42. Altered morphology and function of the lacrimal functional unit in protein kinase C{alpha} knockout mice. Invest Ophthalmol Vis Sci. 2010 Nov; 51(11):5592-600.
    View in: PubMed
    Score: 0.269
  43. Desiccating stress promotion of Th17 differentiation by ocular surface tissues through a dendritic cell-mediated pathway. Invest Ophthalmol Vis Sci. 2010 Jun; 51(6):3083-91.
    View in: PubMed
    Score: 0.264
  44. Minimal clinically important difference for the ocular surface disease index. Arch Ophthalmol. 2010 Jan; 128(1):94-101.
    View in: PubMed
    Score: 0.262
  45. Essential role for c-Jun N-terminal kinase 2 in corneal epithelial response to desiccating stress. Arch Ophthalmol. 2009 Dec; 127(12):1625-31.
    View in: PubMed
    Score: 0.261
  46. Association between high tear epidermal growth factor levels and corneal subepithelial fibrosis in dry eye conditions. Invest Ophthalmol Vis Sci. 2010 Feb; 51(2):844-9.
    View in: PubMed
    Score: 0.258
  47. Corneal epithelial opacity in dysfunctional tear syndrome. Am J Ophthalmol. 2009 Sep; 148(3):376-82.
    View in: PubMed
    Score: 0.253
  48. Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest Ophthalmol Vis Sci. 2009 Jul; 50(7):3203-9.
    View in: PubMed
    Score: 0.247
  49. IL-17 disrupts corneal barrier following desiccating stress. Mucosal Immunol. 2009 May; 2(3):243-53.
    View in: PubMed
    Score: 0.247
  50. Tear cytokine profiles in dysfunctional tear syndrome. Am J Ophthalmol. 2009 Feb; 147(2):198-205. e1.
    View in: PubMed
    Score: 0.242
  51. Rationale for anti-inflammatory therapy in dry eye syndrome. Arq Bras Oftalmol. 2008 Nov-Dec; 71(6 Suppl):89-95.
    View in: PubMed
    Score: 0.242
  52. Desiccating stress decreases apical corneal epithelial cell size--modulation by the metalloproteinase inhibitor doxycycline. Cornea. 2008 Sep; 27(8):935-40.
    View in: PubMed
    Score: 0.239
  53. Epithelial-immune cell interaction in dry eye. Cornea. 2008 Sep; 27 Suppl 1:S9-11.
    View in: PubMed
    Score: 0.239
  54. Interleukin-1 receptor-1-deficient mice show attenuated production of ocular surface inflammatory cytokines in experimental dry eye. Cornea. 2008 Aug; 27(7):811-7.
    View in: PubMed
    Score: 0.238
  55. Prevalence, burden, and pharmacoeconomics of dry eye disease. Am J Manag Care. 2008 Apr; 14(3 Suppl):S102-6.
    View in: PubMed
    Score: 0.232
  56. Effects of sequential artificial tear and cyclosporine emulsion therapy on conjunctival goblet cell density and transforming growth factor-beta2 production. Cornea. 2008 Jan; 27(1):64-9.
    View in: PubMed
    Score: 0.228
  57. Future directions in therapeutic interventions for conjunctival inflammatory disorders. Curr Opin Allergy Clin Immunol. 2007 Oct; 7(5):450-3.
    View in: PubMed
    Score: 0.224
  58. Dry eye-induced conjunctival epithelial squamous metaplasia is modulated by interferon-gamma. Invest Ophthalmol Vis Sci. 2007 Jun; 48(6):2553-60.
    View in: PubMed
    Score: 0.219
  59. Expression of Th-1 chemokines and chemokine receptors on the ocular surface of C57BL/6 mice: effects of desiccating stress. Invest Ophthalmol Vis Sci. 2007 Jun; 48(6):2561-9.
    View in: PubMed
    Score: 0.219
  60. Strain-related cytokine profiles on the murine ocular surface in response to desiccating stress. Cornea. 2007 Jun; 26(5):579-84.
    View in: PubMed
    Score: 0.219
  61. Desiccating stress stimulates expression of matrix metalloproteinases by the corneal epithelium. Invest Ophthalmol Vis Sci. 2006 Aug; 47(8):3293-302.
    View in: PubMed
    Score: 0.207
  62. Apical corneal barrier disruption in experimental murine dry eye is abrogated by methylprednisolone and doxycycline. Invest Ophthalmol Vis Sci. 2006 Jul; 47(7):2847-56.
    View in: PubMed
    Score: 0.206
  63. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res. 2006 Sep; 83(3):526-35.
    View in: PubMed
    Score: 0.203
  64. The incidence and risk factors for developing dry eye after myopic LASIK. Am J Ophthalmol. 2006 Mar; 141(3):438-45.
    View in: PubMed
    Score: 0.201
  65. Integrating restasis into the management of dry eye. Int Ophthalmol Clin. 2006; 46(4):101-3.
    View in: PubMed
    Score: 0.199
  66. Effect of experimental dry eye on tear sodium concentration in the mouse. Eye Contact Lens. 2005 Jul; 31(4):175-8.
    View in: PubMed
    Score: 0.192
  67. Destructive and protective effects and therapeutic targets of IL-36 family cytokines in dry eye disease. Ocul Surf. 2025 Apr; 36:83-93.
    View in: PubMed
    Score: 0.186
  68. Matrix metalloproteinase-9 knockout confers resistance to corneal epithelial barrier disruption in experimental dry eye. Am J Pathol. 2005 Jan; 166(1):61-71.
    View in: PubMed
    Score: 0.185
  69. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol Vis Sci. 2004 Dec; 45(12):4293-301.
    View in: PubMed
    Score: 0.184
  70. Ectoine Enhances Mucin Production Via Restoring IL-13/IFN-? Balance in a Murine Dry Eye Model. Invest Ophthalmol Vis Sci. 2024 Jun 03; 65(6):39.
    View in: PubMed
    Score: 0.178
  71. Tear clearance implications for ocular surface health. Exp Eye Res. 2004 Mar; 78(3):395-7.
    View in: PubMed
    Score: 0.175
  72. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res. 2004 Mar; 78(3):409-16.
    View in: PubMed
    Score: 0.175
  73. Hormonal deficiencies and dry eye. Arch Ophthalmol. 2004 Feb; 122(2):273-4.
    View in: PubMed
    Score: 0.174
  74. Antiinflammatory therapy for dry eye. Am J Ophthalmol. 2004 Feb; 137(2):337-42.
    View in: PubMed
    Score: 0.174
  75. Corneal epitheliopathy of dry eye induces hyperesthesia to mechanical air jet stimulation. Am J Ophthalmol. 2004 Jan; 137(1):109-15.
    View in: PubMed
    Score: 0.173
  76. Differentially Expressed Tear Proteins in Sj?gren's Syndrome Keratoconjunctivitis Sicca. Transl Vis Sci Technol. 2023 06 01; 12(6):8.
    View in: PubMed
    Score: 0.166
  77. Apoptosis of ocular surface cells in experimentally induced dry eye. Invest Ophthalmol Vis Sci. 2003 Jan; 44(1):124-9.
    View in: PubMed
    Score: 0.161
  78. Imbalanced IL-37/TNF-a/CTSS signaling disrupts corneal epithelial barrier in a dry eye model in vitro. Ocul Surf. 2022 10; 26:234-243.
    View in: PubMed
    Score: 0.159
  79. Multicenter prospective validation study for international chronic ocular graft-versus-host disease consensus diagnostic criteria. Ocul Surf. 2022 10; 26:200-208.
    View in: PubMed
    Score: 0.158
  80. A multicenter report of the use of plasma rich in growth factors (PRGF) for the treatment of patients with ocular surface diseases in North America. Ocul Surf. 2022 07; 25:40-48.
    View in: PubMed
    Score: 0.154
  81. Experimentally induced dry eye produces ocular surface inflammation and epithelial disease. Adv Exp Med Biol. 2002; 506(Pt A):647-55.
    View in: PubMed
    Score: 0.151
  82. Dry eye and delayed tear clearance: "a call to arms.". Adv Exp Med Biol. 2002; 506(Pt B):739-43.
    View in: PubMed
    Score: 0.151
  83. Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci. 2001 Sep; 42(10):2283-92.
    View in: PubMed
    Score: 0.147
  84. IL-36a/IL-36RA/IL-38 signaling mediates inflammation and barrier disruption in human corneal epithelial cells under hyperosmotic stress. Ocul Surf. 2021 10; 22:163-171.
    View in: PubMed
    Score: 0.147
  85. Dry eye disease flares: A rapid evidence assessment. Ocul Surf. 2021 10; 22:51-59.
    View in: PubMed
    Score: 0.146
  86. Desiccation Induced Conjunctival Monocyte Recruitment and Activation - Implications for Keratoconjunctivitis. Front Immunol. 2021; 12:701415.
    View in: PubMed
    Score: 0.146
  87. Effects of laser in situ keratomileusis on tear production, clearance, and the ocular surface. Ophthalmology. 2001 Jul; 108(7):1230-5.
    View in: PubMed
    Score: 0.145
  88. Retinoid Regulation of Ocular Surface Innate Inflammation. Int J Mol Sci. 2021 Jan 22; 22(3).
    View in: PubMed
    Score: 0.141
  89. Defining Dry Eye from a Clinical Perspective. Int J Mol Sci. 2020 Dec 04; 21(23).
    View in: PubMed
    Score: 0.140
  90. Autophagy Activation Protects Ocular Surface from Inflammation in a Dry Eye Model In Vitro. Int J Mol Sci. 2020 Nov 26; 21(23).
    View in: PubMed
    Score: 0.140
  91. Rapamycin Eyedrops Increased CD4+Foxp3+ Cells and Prevented Goblet Cell Loss in the Aged Ocular Surface. Int J Mol Sci. 2020 Nov 24; 21(23).
    View in: PubMed
    Score: 0.139
  92. The diagnosis and management of dry eye: a twenty-five-year review. Cornea. 2000 Sep; 19(5):644-9.
    View in: PubMed
    Score: 0.137
  93. A standardized visual scale for evaluation of tear fluorescein clearance. Ophthalmology. 2000 Jul; 107(7):1338-43.
    View in: PubMed
    Score: 0.136
  94. [The effect of artificial tears on corneal surface regularity in dry eye]. Zhonghua Yan Ke Za Zhi. 2000 Mar; 36(2):131-4.
    View in: PubMed
    Score: 0.133
  95. Topical cyclosporine A therapy for dry eye syndrome. Cochrane Database Syst Rev. 2019 09 13; 9:CD010051.
    View in: PubMed
    Score: 0.128
  96. Corneal thickness is reduced in dry eye. Cornea. 1999 Jul; 18(4):403-7.
    View in: PubMed
    Score: 0.127
  97. Corneal surface regularity and the effect of artificial tears in aqueous tear deficiency. Ophthalmology. 1999 May; 106(5):939-43.
    View in: PubMed
    Score: 0.125
  98. Correlation of tear fluorescein clearance and Schirmer test scores with ocular irritation symptoms. Ophthalmology. 1999 Apr; 106(4):803-10.
    View in: PubMed
    Score: 0.124
  99. Age-associated antigen-presenting cell alterations promote dry-eye inducing Th1 cells. Mucosal Immunol. 2019 07; 12(4):897-908.
    View in: PubMed
    Score: 0.123
  100. The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea. 1998 Nov; 17(6):584-9.
    View in: PubMed
    Score: 0.121
  101. Reduced intraepithelial corneal nerve density and sensitivity accompany desiccating stress and aging in C57BL/6 mice. Exp Eye Res. 2018 04; 169:91-98.
    View in: PubMed
    Score: 0.115
  102. Evaluation of subjective assessments and objective diagnostic tests for diagnosing tear-film disorders known to cause ocular irritation. Cornea. 1998 Jan; 17(1):38-56.
    View in: PubMed
    Score: 0.114
  103. A unified theory of the role of the ocular surface in dry eye. Adv Exp Med Biol. 1998; 438:643-51.
    View in: PubMed
    Score: 0.114
  104. Study design and baseline findings from the progression of ocular findings (PROOF) natural history study of dry eye. BMC Ophthalmol. 2017 Dec 28; 17(1):265.
    View in: PubMed
    Score: 0.114
  105. Mitochondrial DNA oxidation induces imbalanced activity of NLRP3/NLRP6 inflammasomes by activation of caspase-8 and BRCC36 in dry eye. J Autoimmun. 2017 Jun; 80:65-76.
    View in: PubMed
    Score: 0.108
  106. Tear Volume-based Diagnostic Classification for Tear Dysfunction. Int Ophthalmol Clin. 2017; 57(2):1-12.
    View in: PubMed
    Score: 0.106
  107. Interferon-gamma deficiency protects against aging-related goblet cell loss. Oncotarget. 2016 10 04; 7(40):64605-64614.
    View in: PubMed
    Score: 0.105
  108. Dexamethasone Drug Eluting Nanowafers Control Inflammation in Alkali-Burned Corneas Associated With Dry Eye. Invest Ophthalmol Vis Sci. 2016 06 01; 57(7):3222-30.
    View in: PubMed
    Score: 0.102
  109. Inflammatory Response to Lipopolysaccharide on the Ocular Surface in a Murine Dry Eye Model. Invest Ophthalmol Vis Sci. 2016 05 01; 57(6):2443-51.
    View in: PubMed
    Score: 0.102
  110. Altered Mucosal Microbiome Diversity and Disease Severity in Sj?gren Syndrome. Sci Rep. 2016 Apr 18; 6:23561.
    View in: PubMed
    Score: 0.101
  111. Differential diagnosis of dry eye conditions. Adv Dent Res. 1996 Apr; 10(1):9-12.
    View in: PubMed
    Score: 0.101
  112. MMP-8 Is Critical for Dexamethasone Therapy in Alkali-Burned Corneas Under Dry Eye Conditions. J Cell Physiol. 2016 11; 231(11):2506-16.
    View in: PubMed
    Score: 0.101
  113. Lifitegrast, a Novel Integrin Antagonist for Treatment of Dry Eye Disease. Ocul Surf. 2016 04; 14(2):207-15.
    View in: PubMed
    Score: 0.100
  114. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye. PLoS One. 2015; 10(9):e0138958.
    View in: PubMed
    Score: 0.097
  115. Improvement of Outcome Measures of Dry Eye by a Novel Integrin Antagonist in the Murine Desiccating Stress Model. Invest Ophthalmol Vis Sci. 2015 Sep; 56(10):5888-95.
    View in: PubMed
    Score: 0.097
  116. Dexamethasone nanowafer as an effective therapy for dry eye disease. J Control Release. 2015 Sep 10; 213:168-174.
    View in: PubMed
    Score: 0.096
  117. Clinical guidelines for management of dry eye associated with Sj?gren disease. Ocul Surf. 2015 Apr; 13(2):118-32.
    View in: PubMed
    Score: 0.093
  118. Effect of loteprednol etabonate 0.5% on initiation of dry eye treatment with topical cyclosporine 0.05%. Eye Contact Lens. 2014 Sep; 40(5):289-96.
    View in: PubMed
    Score: 0.091
  119. Ocular surface disease and dacryoadenitis in aging C57BL/6 mice. Am J Pathol. 2014 Mar; 184(3):631-43.
    View in: PubMed
    Score: 0.086
  120. In vivo confocal microscopy of the ocular surface: from bench to bedside. Curr Eye Res. 2014 Mar; 39(3):213-31.
    View in: PubMed
    Score: 0.086
  121. Effect of desiccating stress on mouse meibomian gland function. Ocul Surf. 2014 Jan; 12(1):59-68.
    View in: PubMed
    Score: 0.085
  122. Dendritic cell-derived thrombospondin-1 is critical for the generation of the ocular surface Th17 response to desiccating stress. J Leukoc Biol. 2013 Dec; 94(6):1293-301.
    View in: PubMed
    Score: 0.084
  123. Morphologic alterations of the palpebral conjunctival epithelium in a dry eye model. Cornea. 2013 Apr; 32(4):483-90.
    View in: PubMed
    Score: 0.082
  124. Toll-like receptor expression and activation in mice with experimental dry eye. Invest Ophthalmol Vis Sci. 2013 Feb 28; 54(2):1554-63.
    View in: PubMed
    Score: 0.082
  125. Resolvin E1 (RX-10001) reduces corneal epithelial barrier disruption and protects against goblet cell loss in a murine model of dry eye. Cornea. 2012 Nov; 31(11):1299-303.
    View in: PubMed
    Score: 0.080
  126. NK cells promote Th-17 mediated corneal barrier disruption in dry eye. PLoS One. 2012; 7(5):e36822.
    View in: PubMed
    Score: 0.077
  127. Disruption of TGF-? signaling improves ocular surface epithelial disease in experimental autoimmune keratoconjunctivitis sicca. PLoS One. 2011; 6(12):e29017.
    View in: PubMed
    Score: 0.075
  128. Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway. Exp Eye Res. 2012 Jan; 94(1):150-6.
    View in: PubMed
    Score: 0.075
  129. Dysfunctional tear syndrome: a Delphi approach to treatment recommendations. Cornea. 2006 Sep; 25(8):900-7.
    View in: PubMed
    Score: 0.052
  130. Phase III safety evaluation of cyclosporine 0.1% ophthalmic emulsion administered twice daily to dry eye disease patients for up to 3 years. Ophthalmology. 2005 Oct; 112(10):1790-4.
    View in: PubMed
    Score: 0.049
  131. Interleukin-6 levels in the conjunctival epithelium of patients with dry eye disease treated with cyclosporine ophthalmic emulsion. Cornea. 2000 Jul; 19(4):492-6.
    View in: PubMed
    Score: 0.034
  132. The gut-eye-lacrimal gland-microbiome axis in Sj?gren Syndrome. Ocul Surf. 2020 04; 18(2):335-344.
    View in: PubMed
    Score: 0.032
  133. Suppression of Th1-Mediated Keratoconjunctivitis Sicca by Lifitegrast. J Ocul Pharmacol Ther. 2018 09; 34(7):543-549.
    View in: PubMed
    Score: 0.030
  134. Tear fluid influence on the ocular surface. Adv Exp Med Biol. 1998; 438:611-7.
    View in: PubMed
    Score: 0.029
  135. Differential Effects of Dexamethasone and Doxycycline on Inflammation and MMP Production in Murine Alkali-Burned Corneas Associated with Dry Eye. Ocul Surf. 2016 04; 14(2):242-54.
    View in: PubMed
    Score: 0.025
  136. In vitro expanded CD4+CD25+Foxp3+ regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation. Invest Ophthalmol Vis Sci. 2008 Dec; 49(12):5434-40.
    View in: PubMed
    Score: 0.015
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.