Connection

Co-Authors

This is a "connection" page, showing publications co-authored by FADA GUAN and RADHE MOHAN.
Connection Strength

5.111
  1. Interpreting the biological effects of protons as a function of physical quantity: linear energy transfer or microdosimetric lineal energy spectrum? Sci Rep. 2024 10 24; 14(1):25181.
    View in: PubMed
    Score: 0.987
  2. Mimicking large spot-scanning radiation fields for proton FLASH preclinical studies with a robotic motion platform. ArXiv. 2024 Sep 14.
    View in: PubMed
    Score: 0.980
  3. A mechanistic relative biological effectiveness model-based biological dose optimization for charged particle radiobiology studies. Phys Med Biol. 2018 12 21; 64(1):015008.
    View in: PubMed
    Score: 0.658
  4. RBE Model-Based Biological Dose Optimization for Proton Radiobiology Studies. Int J Part Ther. 2018; 5(1):160-171.
    View in: PubMed
    Score: 0.647
  5. Dosimetric response of Gafchromic? EBT-XD film to therapeutic protons. Precis Radiat Oncol. 2023 Mar; 7(1):15-26.
    View in: PubMed
    Score: 0.220
  6. Author Correction: Exploring the advantages of intensity-modulated proton therapy: experimental validation of biological effects using two different beam intensity-modulation patterns. Sci Rep. 2020 Oct 30; 10(1):19101.
    View in: PubMed
    Score: 0.187
  7. Exploring the advantages of intensity-modulated proton therapy: experimental validation of biological effects using two different beam intensity-modulation patterns. Sci Rep. 2020 02 21; 10(1):3199.
    View in: PubMed
    Score: 0.178
  8. Using the Proton Energy Spectrum and Microdosimetry to Model Proton Relative Biological Effectiveness. Int J Radiat Oncol Biol Phys. 2019 06 01; 104(2):316-324.
    View in: PubMed
    Score: 0.166
  9. Potential for Improvements in Robustness and Optimality of Intensity-Modulated Proton Therapy for Lung Cancer with 4-Dimensional Robust Optimization. Cancers (Basel). 2019 Jan 01; 11(1).
    View in: PubMed
    Score: 0.165
  10. Erratum: "Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code" [Med. Phys. 42 (11), page range 6234-6247(2015)]. Med Phys. 2018 Mar; 45(3):1302.
    View in: PubMed
    Score: 0.155
  11. Radiobiological issues in proton therapy. Acta Oncol. 2017 Nov; 56(11):1367-1373.
    View in: PubMed
    Score: 0.150
  12. Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code. Med Phys. 2015 Nov; 42(11):6234-47.
    View in: PubMed
    Score: 0.132
  13. Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Sci Rep. 2015 May 18; 5:9850.
    View in: PubMed
    Score: 0.128
  14. Optimization of FLASH proton beams using a track-repeating algorithm. Med Phys. 2022 Oct; 49(10):6684-6698.
    View in: PubMed
    Score: 0.053
  15. Roadmap: helium ion therapy. Phys Med Biol. 2022 08 05; 67(15).
    View in: PubMed
    Score: 0.053
  16. Adaptation and dosimetric commissioning of a synchrotron-based proton beamline for FLASH experiments. Phys Med Biol. 2022 08 05; 67(16).
    View in: PubMed
    Score: 0.053
  17. Mapping the Relative Biological Effectiveness of Proton, Helium and Carbon Ions with High-Throughput Techniques. Cancers (Basel). 2020 Dec 05; 12(12).
    View in: PubMed
    Score: 0.047
  18. Patterns of Local-Regional Failure After Intensity Modulated Radiation Therapy or Passive Scattering Proton Therapy With Concurrent Chemotherapy for Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2019 01 01; 103(1):123-131.
    View in: PubMed
    Score: 0.040
  19. Erratum: "Monte Carlo simulations of 3 He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness" [Med. Phys. 43 (2), page range 761-776(2016)]. Med Phys. 2018 Mar; 45(3):1301.
    View in: PubMed
    Score: 0.039
  20. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams. Med Phys. 2017 Nov; 44(11):6061-6073.
    View in: PubMed
    Score: 0.038
  21. Monte Carlo simulations of ?He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness. Med Phys. 2016 Feb; 43(2):761-76.
    View in: PubMed
    Score: 0.034
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.