Connection

Co-Authors

This is a "connection" page, showing publications co-authored by KOICHI TAKAHASHI and MARINA KONOPLEVA.
Connection Strength

6.449
  1. Clonal dynamics and clinical implications of postremission clonal hematopoiesis in acute myeloid leukemia. Blood. 2021 11 04; 138(18):1733-1739.
    View in: PubMed
    Score: 0.203
  2. Prognostic impact of conventional cytogenetics in acute myeloid leukemia treated with venetoclax and decitabine. Leuk Lymphoma. 2021 12; 62(14):3501-3505.
    View in: PubMed
    Score: 0.201
  3. Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax. Cancer. 2021 10 15; 127(20):3772-3781.
    View in: PubMed
    Score: 0.199
  4. Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia. Nat Commun. 2021 05 10; 12(1):2607.
    View in: PubMed
    Score: 0.196
  5. Author Correction: Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2021 May 10; 12(1):2823.
    View in: PubMed
    Score: 0.196
  6. Duration of cytopenias with concomitant venetoclax and azole antifungals in acute myeloid leukemia. Cancer. 2021 07 15; 127(14):2489-2499.
    View in: PubMed
    Score: 0.195
  7. Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens. Haematologica. 2021 03 01; 106(3):894-898.
    View in: PubMed
    Score: 0.194
  8. Decitabine and venetoclax for IDH1/2-mutated acute myeloid leukemia. Am J Hematol. 2021 05 01; 96(5):E154-E157.
    View in: PubMed
    Score: 0.193
  9. Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer J. 2021 02 01; 11(2):25.
    View in: PubMed
    Score: 0.193
  10. Venetoclax with decitabine vs intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatment-related mortality. Am J Hematol. 2021 03 01; 96(3):282-291.
    View in: PubMed
    Score: 0.191
  11. Publisher Correction: Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020 Nov 19; 11(1):5996.
    View in: PubMed
    Score: 0.190
  12. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020 10 21; 11(1):5327.
    View in: PubMed
    Score: 0.189
  13. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematol. 2020 Oct; 7(10):e724-e736.
    View in: PubMed
    Score: 0.187
  14. Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nat Commun. 2018 07 10; 9(1):2670.
    View in: PubMed
    Score: 0.161
  15. Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. J Clin Oncol. 2018 06 20; 36(18):1788-1797.
    View in: PubMed
    Score: 0.159
  16. Clinical implications of TP53 mutations in myelodysplastic syndromes treated with hypomethylating agents. Oncotarget. 2016 Mar 22; 7(12):14172-87.
    View in: PubMed
    Score: 0.137
  17. Clofarabine Plus Low-Dose Cytarabine Is as Effective as and Less Toxic Than Intensive Chemotherapy in Elderly AML Patients. Clin Lymphoma Myeloma Leuk. 2016 Mar; 16(3):163-8.e1-2.
    View in: PubMed
    Score: 0.134
  18. Targeting DNA2 overcomes metabolic reprogramming in multiple myeloma. Nat Commun. 2024 Feb 08; 15(1):1203.
    View in: PubMed
    Score: 0.059
  19. Response patterns and impact of MRD in patients with IDH1/2-mutated AML treated with venetoclax and hypomethylating agents. Blood Cancer J. 2023 09 21; 13(1):148.
    View in: PubMed
    Score: 0.058
  20. Characteristics and clinical outcomes of patients with acute myeloid leukemia with inv(3)(q21q26.2) or t(3;3)(q21;q26.2). Haematologica. 2023 09 01; 108(9):2331-2342.
    View in: PubMed
    Score: 0.058
  21. Geographic Disparity of Outcome in Patients With Cancer Over Decades: The Surveillance, Epidemiology, and End Results. Clin Lymphoma Myeloma Leuk. 2023 11; 23(11):e369-e378.
    View in: PubMed
    Score: 0.057
  22. A Phase Ib/II Study of Ivosidenib with Venetoclax ? Azacitidine in IDH1-Mutated Myeloid Malignancies. Blood Cancer Discov. 2023 07 05; 4(4):276-293.
    View in: PubMed
    Score: 0.057
  23. Philadelphia-Like Genetic Rearrangements in Adults With B-Cell ALL: Refractoriness to Chemotherapy and Response to Tyrosine Kinase Inhibitor in ABL Class Rearrangements. JCO Precis Oncol. 2023 05; 7:e2200707.
    View in: PubMed
    Score: 0.056
  24. Clinical outcomes associated with NPM1 mutations in patients with relapsed or refractory AML. Blood Adv. 2023 03 28; 7(6):933-942.
    View in: PubMed
    Score: 0.056
  25. Implications of RAS mutational status in subsets of patients with newly diagnosed acute myeloid leukemia across therapy subtypes. Am J Hematol. 2022 12; 97(12):1599-1606.
    View in: PubMed
    Score: 0.054
  26. Contemporary outcomes in IDH-mutated acute myeloid leukemia: The impact of co-occurring NPM1 mutations and venetoclax-based treatment. Am J Hematol. 2022 11; 97(11):1443-1452.
    View in: PubMed
    Score: 0.054
  27. High-sensitivity next-generation sequencing MRD assessment in ALL identifies patients at very low risk of relapse. Blood Adv. 2022 07 12; 6(13):4006-4014.
    View in: PubMed
    Score: 0.053
  28. Phase II Study of Venetoclax Added to Cladribine Plus Low-Dose Cytarabine Alternating With 5-Azacitidine in Older Patients With Newly Diagnosed Acute Myeloid Leukemia. J Clin Oncol. 2022 11 20; 40(33):3848-3857.
    View in: PubMed
    Score: 0.053
  29. Venetoclax combined with FLAG-IDA induction and consolidation in newly diagnosed acute myeloid leukemia. Am J Hematol. 2022 08; 97(8):1035-1043.
    View in: PubMed
    Score: 0.053
  30. Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nat Commun. 2022 05 19; 13(1):2801.
    View in: PubMed
    Score: 0.053
  31. Hypomethylating agent and venetoclax with FLT3 inhibitor "triplet" therapy in older/unfit patients with FLT3 mutated AML. Blood Cancer J. 2022 05 02; 12(5):77.
    View in: PubMed
    Score: 0.052
  32. Correction: Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib. Leukemia. 2022 May; 36(5):1448.
    View in: PubMed
    Score: 0.052
  33. Venetoclax combined with induction chemotherapy in patients with newly diagnosed acute myeloid leukaemia: a post-hoc, propensity score-matched, cohort study. Lancet Haematol. 2022 May; 9(5):e350-e360.
    View in: PubMed
    Score: 0.052
  34. A multi-arm phase Ib/II study designed for rapid, parallel evaluation of novel immunotherapy combinations in relapsed/refractory acute myeloid leukemia. Leuk Lymphoma. 2022 09; 63(9):2161-2170.
    View in: PubMed
    Score: 0.052
  35. Dismal outcomes of patients with relapsed/refractory Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia after failure of both inotuzumab ozogamicin and blinatumomab. Am J Hematol. 2022 06 01; 97(6):E201-E204.
    View in: PubMed
    Score: 0.052
  36. Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib. Leukemia. 2022 05; 36(5):1253-1260.
    View in: PubMed
    Score: 0.052
  37. Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer J. 2022 01 25; 12(1):10.
    View in: PubMed
    Score: 0.052
  38. Outcomes of acute lymphoblastic leukemia with KMT2A (MLL) rearrangement: the MD Anderson experience. Blood Adv. 2021 12 14; 5(23):5415-5419.
    View in: PubMed
    Score: 0.051
  39. Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy. Nat Commun. 2021 10 18; 12(1):6071.
    View in: PubMed
    Score: 0.051
  40. Development of TP53 mutations over the course of therapy for acute myeloid leukemia. Am J Hematol. 2021 11 01; 96(11):1420-1428.
    View in: PubMed
    Score: 0.050
  41. Ibrutinib Plus Venetoclax for First-line Treatment of Chronic Lymphocytic Leukemia: A Nonrandomized Phase 2 Trial. JAMA Oncol. 2021 Aug 01; 7(8):1213-1219.
    View in: PubMed
    Score: 0.050
  42. Hyper-CVAD plus ofatumumab versus hyper-CVAD plus rituximab as frontline therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: A propensity score analysis. Cancer. 2021 09 15; 127(18):3381-3389.
    View in: PubMed
    Score: 0.049
  43. Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. J Clin Oncol. 2021 09 01; 39(25):2768-2778.
    View in: PubMed
    Score: 0.049
  44. Ibrutinib, fludarabine, cyclophosphamide, and obinutuzumab (iFCG) regimen for chronic lymphocytic leukemia (CLL) with mutated IGHV and without TP53 aberrations. Leukemia. 2021 12; 35(12):3421-3429.
    View in: PubMed
    Score: 0.049
  45. Isavuconazole as Primary Antifungal Prophylaxis in Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome: An Open-label, Prospective, Phase 2 Study. Clin Infect Dis. 2021 05 18; 72(10):1755-1763.
    View in: PubMed
    Score: 0.049
  46. Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. J Exp Med. 2021 05 03; 218(5).
    View in: PubMed
    Score: 0.049
  47. Clinicopathologic correlates and natural history of atypical chronic myeloid leukemia. Cancer. 2021 09 01; 127(17):3113-3124.
    View in: PubMed
    Score: 0.049
  48. Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Adv. 2021 04 27; 5(8):2173-2183.
    View in: PubMed
    Score: 0.049
  49. Prognostic value of measurable residual disease after venetoclax and decitabine in acute myeloid leukemia. Blood Adv. 2021 04 13; 5(7):1876-1883.
    View in: PubMed
    Score: 0.049
  50. Outcome of patients with chronic myeloid leukemia in lymphoid blastic phase and Philadelphia chromosome-positive acute lymphoblastic leukemia treated with hyper-CVAD and dasatinib. Cancer. 2021 08 01; 127(15):2641-2647.
    View in: PubMed
    Score: 0.049
  51. Outcome of T-cell acute lymphoblastic leukemia/lymphoma: Focus on near-ETP phenotype and differential impact of nelarabine. Am J Hematol. 2021 05 01; 96(5):589-598.
    View in: PubMed
    Score: 0.049
  52. Correction to: Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol. 2021 Feb 23; 14(1):34.
    View in: PubMed
    Score: 0.048
  53. Flow cytometric immunophenotypic alterations of persistent clonal haematopoiesis in remission bone marrows of patients with NPM1-mutated acute myeloid leukaemia. Br J Haematol. 2021 03; 192(6):1054-1063.
    View in: PubMed
    Score: 0.048
  54. Next-Generation Sequencing of DDX41 in Myeloid Neoplasms Leads to Increased Detection of Germline Alterations. Front Oncol. 2020; 10:582213.
    View in: PubMed
    Score: 0.048
  55. Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 inhibitors. Blood Cancer Discov. 2021 03; 2(2):125-134.
    View in: PubMed
    Score: 0.048
  56. The LEukemia Artificial Intelligence Program (LEAP) in chronic myeloid leukemia in chronic phase: A model to improve patient outcomes. Am J Hematol. 2021 02 01; 96(2):241-250.
    View in: PubMed
    Score: 0.048
  57. Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Adv. 2020 11 24; 4(22):5681-5689.
    View in: PubMed
    Score: 0.048
  58. Clinical outcomes and influence of mutation clonal dominance in oligomonocytic and classical chronic myelomonocytic leukemia. Am J Hematol. 2021 02 01; 96(2):E50-E53.
    View in: PubMed
    Score: 0.048
  59. Clinical characteristics and outcomes in patients with acute myeloid leukemia with concurrent FLT3-ITD and IDH mutations. Cancer. 2021 02 01; 127(3):381-390.
    View in: PubMed
    Score: 0.047
  60. Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol. 2020 10 08; 13(1):132.
    View in: PubMed
    Score: 0.047
  61. Natural history of newly diagnosed myelodysplastic syndrome with isolated inv(3)/t(3;3). Am J Hematol. 2020 12; 95(12):E326-E329.
    View in: PubMed
    Score: 0.047
  62. First Report of Sorafenib in Patients With Acute Myeloid Leukemia Harboring Non-Canonical FLT3 Mutations. Front Oncol. 2020; 10:1538.
    View in: PubMed
    Score: 0.047
  63. Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematol. 2020 Jul; 7(7):e523-e533.
    View in: PubMed
    Score: 0.046
  64. Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens. Blood Adv. 2020 04 14; 4(7):1311-1320.
    View in: PubMed
    Score: 0.046
  65. Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am J Hematol. 2020 06; 95(6):612-622.
    View in: PubMed
    Score: 0.045
  66. Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Adv. 2020 02 11; 4(3):482-495.
    View in: PubMed
    Score: 0.045
  67. The early achievement of measurable residual disease negativity in the treatment of adults with Philadelphia-negative B-cell acute lymphoblastic leukemia is a strong predictor for survival. Am J Hematol. 2020 02; 95(2):144-150.
    View in: PubMed
    Score: 0.044
  68. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study. Lancet Haematol. 2019 Sep; 6(9):e480-e488.
    View in: PubMed
    Score: 0.043
  69. Ibrutinib and Venetoclax for First-Line Treatment of CLL. N Engl J Med. 2019 05 30; 380(22):2095-2103.
    View in: PubMed
    Score: 0.043
  70. NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv. 2019 03 26; 3(6):922-933.
    View in: PubMed
    Score: 0.042
  71. NPM1 mutant variant allele frequency correlates with leukemia burden but does not provide prognostic information in NPM1-mutated acute myeloid leukemia. Am J Hematol. 2019 06; 94(6):E158-E160.
    View in: PubMed
    Score: 0.042
  72. Incidence of second malignancies in patients with chronic myeloid leukemia in the era of tyrosine kinase inhibitors. Int J Hematol. 2019 May; 109(5):545-552.
    View in: PubMed
    Score: 0.042
  73. A phase II study of omacetaxine mepesuccinate for patients with higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia after failure of hypomethylating agents. Am J Hematol. 2019 01; 94(1):74-79.
    View in: PubMed
    Score: 0.041
  74. Salvage Chemoimmunotherapy With Inotuzumab Ozogamicin Combined With Mini-Hyper-CVD for Patients With Relapsed or Refractory Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia: A Phase 2 Clinical Trial. JAMA Oncol. 2018 Feb 01; 4(2):230-234.
    View in: PubMed
    Score: 0.039
  75. Outcomes with lower intensity therapy in TP53-mutated acute myeloid leukemia. Leuk Lymphoma. 2018 09; 59(9):2238-2241.
    View in: PubMed
    Score: 0.039
  76. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget. 2018 Feb 09; 9(11):9714-9727.
    View in: PubMed
    Score: 0.039
  77. Prediction for sustained deep molecular response of BCR-ABL1 levels in patients with chronic myeloid leukemia in chronic phase. Cancer. 2018 03 15; 124(6):1160-1168.
    View in: PubMed
    Score: 0.039
  78. Safety and Efficacy of Blinatumomab in Combination With a Tyrosine Kinase Inhibitor for the Treatment of Relapsed Philadelphia Chromosome-positive Leukemia. Clin Lymphoma Myeloma Leuk. 2017 Dec; 17(12):897-901.
    View in: PubMed
    Score: 0.038
  79. Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Adv. 2017 Jul 25; 1(17):1312-1323.
    View in: PubMed
    Score: 0.038
  80. TP53 mutation does not confer a poor outcome in adult patients with acute lymphoblastic leukemia who are treated with frontline hyper-CVAD-based regimens. Cancer. 2017 Oct 01; 123(19):3717-3724.
    View in: PubMed
    Score: 0.037
  81. Natural history of chronic myelomonocytic leukemia treated with hypomethylating agents. Am J Hematol. 2017 Jul; 92(7):599-606.
    View in: PubMed
    Score: 0.037
  82. Characteristics and outcomes of older patients with secondary acute myeloid leukemia according to treatment approach. Cancer. 2017 Aug 15; 123(16):3050-3060.
    View in: PubMed
    Score: 0.037
  83. More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia. Blood. 2017 05 04; 129(18):2584-2587.
    View in: PubMed
    Score: 0.037
  84. TP53 mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes. Cancer. 2016 Nov 15; 122(22):3484-3491.
    View in: PubMed
    Score: 0.035
  85. Frontline therapy with high-dose imatinib versus second generation tyrosine kinase inhibitor in patients with chronic-phase chronic myeloid leukemia - a propensity score analysis. Haematologica. 2016 08; 101(8):e324-7.
    View in: PubMed
    Score: 0.035
  86. Conditional survival in patients with chronic myeloid leukemia in chronic phase in the era of tyrosine kinase inhibitors. Cancer. 2016 Jan 15; 122(2):238-48.
    View in: PubMed
    Score: 0.033
  87. Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leuk Res. 2015 Dec; 39(12):1367-74.
    View in: PubMed
    Score: 0.033
  88. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015 Aug; 90(8):732-6.
    View in: PubMed
    Score: 0.033
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.