Connection

OGUZ KANCA to Phenotype

This is a "connection" page, showing publications OGUZ KANCA has written about Phenotype.
Connection Strength

0.406
  1. De novo variants in CDKL1 and CDKL2 are associated with neurodevelopmental symptoms. Am J Hum Genet. 2025 Apr 03; 112(4):846-862.
    View in: PubMed
    Score: 0.121
  2. De Novo Variants in WDR37 Are Associated with Epilepsy, Colobomas, Dysmorphism, Developmental Delay, Intellectual Disability, and Cerebellar Hypoplasia. Am J Hum Genet. 2019 08 01; 105(2):413-424.
    View in: PubMed
    Score: 0.082
  3. Functional analysis of pathogenic variants in LAMB1-related leukoencephalopathy reveals genotype-phenotype correlations and suggests its role in glial cells. Hum Mol Genet. 2025 May 17; 34(11):990-999.
    View in: PubMed
    Score: 0.031
  4. Loss-of-function in RBBP5 results in a syndromic neurodevelopmental disorder associated with microcephaly. Genet Med. 2024 Nov; 26(11):101218.
    View in: PubMed
    Score: 0.029
  5. Homozygous missense variants in YKT6 result in loss of function and are associated with developmental delay, with or without severe infantile liver disease and risk for hepatocellular carcinoma. Genet Med. 2024 Jul; 26(7):101125.
    View in: PubMed
    Score: 0.028
  6. De novo variants in MRTFB have gain-of-function activity in Drosophila and are associated with a novel neurodevelopmental phenotype with dysmorphic features. Genet Med. 2023 06; 25(6):100833.
    View in: PubMed
    Score: 0.026
  7. The recurrent de novo c.2011C>T missense variant in MTSS2 causes syndromic intellectual disability. Am J Hum Genet. 2022 10 06; 109(10):1923-1931.
    View in: PubMed
    Score: 0.025
  8. De novo FZR1 loss-of-function variants cause developmental and epileptic encephalopathies. Brain. 2022 06 03; 145(5):1684-1697.
    View in: PubMed
    Score: 0.025
  9. Heterozygous loss-of-function variants significantly expand the phenotypes associated with loss of GDF11. Genet Med. 2021 10; 23(10):1889-1900.
    View in: PubMed
    Score: 0.023
  10. The Drosophila melanogaster Mutants apblot and apXasta Affect an Essential apterous Wing Enhancer. G3 (Bethesda). 2015 Apr 02; 5(6):1129-43.
    View in: PubMed
    Score: 0.015
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.