Connection

UWE TITT to Humans

This is a "connection" page, showing publications UWE TITT has written about Humans.
Connection Strength

0.132
  1. Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code. Med Phys. 2015 Nov; 42(11):6234-47.
    View in: PubMed
    Score: 0.010
  2. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material. Med Phys. 2015 Nov; 42(11):6425-32.
    View in: PubMed
    Score: 0.010
  3. Comparison of MCNPX and Geant4 proton energy deposition predictions for clinical use. Phys Med Biol. 2012 Oct 21; 57(20):6381-93.
    View in: PubMed
    Score: 0.008
  4. Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency. Phys Med Biol. 2010 Dec 07; 55(23):7097-106.
    View in: PubMed
    Score: 0.007
  5. Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions. Phys Med Biol. 2008 Aug 21; 53(16):4455-70.
    View in: PubMed
    Score: 0.006
  6. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method. Phys Med Biol. 2008 Jan 21; 53(2):487-504.
    View in: PubMed
    Score: 0.006
  7. Treatment-planning study of prostate cancer intensity-modulated radiotherapy with a Varian Clinac operated without a flattening filter. Int J Radiat Oncol Biol Phys. 2007 Aug 01; 68(5):1567-71.
    View in: PubMed
    Score: 0.006
  8. Monte Carlo study of backscatter in a flattening filter free clinical accelerator. Med Phys. 2006 Sep; 33(9):3270-3.
    View in: PubMed
    Score: 0.005
  9. Properties of unflattened photon beams shaped by a multileaf collimator. Med Phys. 2006 Jun; 33(6):1738-46.
    View in: PubMed
    Score: 0.005
  10. MCNPX simulation of a multileaf collimator. Med Phys. 2006 Feb; 33(2):402-4.
    View in: PubMed
    Score: 0.005
  11. Monte Carlo simulations of a nozzle for the treatment of ocular tumours with high-energy proton beams. Phys Med Biol. 2005 Nov 21; 50(22):5229-49.
    View in: PubMed
    Score: 0.005
  12. Patient neutron dose equivalent exposures outside of the proton therapy treatment field. Radiat Prot Dosimetry. 2005; 115(1-4):154-8.
    View in: PubMed
    Score: 0.005
  13. Design tools for proton therapy nozzles based on the double-scattering foil technique. Radiat Prot Dosimetry. 2005; 116(1-4 Pt 2):211-5.
    View in: PubMed
    Score: 0.005
  14. Effect of boron compounds on the biological effectiveness of proton therapy. Med Phys. 2022 09; 49(9):6098-6109.
    View in: PubMed
    Score: 0.004
  15. Nonhomologous End Joining Is More Important Than Proton Linear Energy Transfer in Dictating Cell Death. Int J Radiat Oncol Biol Phys. 2019 12 01; 105(5):1119-1125.
    View in: PubMed
    Score: 0.003
  16. Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy. Phys Med Biol. 2018 02 09; 63(4):045003.
    View in: PubMed
    Score: 0.003
  17. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams. Med Phys. 2017 Nov; 44(11):6061-6073.
    View in: PubMed
    Score: 0.003
  18. Differences in Normal Tissue Response in the Esophagus Between Proton and Photon Radiation Therapy for Non-Small Cell Lung Cancer Using In?Vivo Imaging Biomarkers. Int J Radiat Oncol Biol Phys. 2017 11 15; 99(4):1013-1020.
    View in: PubMed
    Score: 0.003
  19. Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol. 2016 12; 121(3):395-401.
    View in: PubMed
    Score: 0.003
  20. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine. Phys Med Biol. 2016 06 21; 61(12):4564-82.
    View in: PubMed
    Score: 0.003
  21. Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study. Phys Med Biol. 2016 Apr 07; 61(7):2633-45.
    View in: PubMed
    Score: 0.003
  22. Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Sci Rep. 2015 May 18; 5:9850.
    View in: PubMed
    Score: 0.002
  23. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration. Phys Med Biol. 2012 Jul 07; 57(13):4095-115.
    View in: PubMed
    Score: 0.002
  24. Estimate of the uncertainties in the relative risk of secondary malignant neoplasms following proton therapy and intensity-modulated photon therapy. Phys Med Biol. 2010 Dec 07; 55(23):6987-98.
    View in: PubMed
    Score: 0.002
  25. Stereotactic radiotherapy for lung cancer using a flattening filter free Clinac. J Appl Clin Med Phys. 2009 Jan 27; 10(1):14-21.
    View in: PubMed
    Score: 0.002
  26. Monte Carlo study shows no significant difference in second cancer risk between 6- and 18-MV intensity-modulated radiation therapy. Radiother Oncol. 2009 Apr; 91(1):132-7.
    View in: PubMed
    Score: 0.002
  27. Feasibility of a multigroup deterministic solution method for three-dimensional radiotherapy dose calculations. Int J Radiat Oncol Biol Phys. 2008 Sep 01; 72(1):220-7.
    View in: PubMed
    Score: 0.002
  28. Density heterogeneities and the influence of multiple Coulomb and nuclear scatterings on the Bragg peak distal edge of proton therapy beams. Phys Med Biol. 2008 Sep 07; 53(17):4605-19.
    View in: PubMed
    Score: 0.002
  29. Energy spectra, sources, and shielding considerations for neutrons generated by a flattening filter-free Clinac. Med Phys. 2008 May; 35(5):1906-11.
    View in: PubMed
    Score: 0.002
  30. Reducing stray radiation dose to patients receiving passively scattered proton radiotherapy for prostate cancer. Phys Med Biol. 2008 Apr 21; 53(8):2131-47.
    View in: PubMed
    Score: 0.001
  31. Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy. Phys Med Biol. 2008 Mar 21; 53(6):1581-94.
    View in: PubMed
    Score: 0.001
  32. Initial beam size study for passive scatter proton therapy. I. Monte Carlo verification. Med Phys. 2007 Nov; 34(11):4213-8.
    View in: PubMed
    Score: 0.001
  33. A Monte Carlo model for out-of-field dose calculation from high-energy photon therapy. Med Phys. 2007 Sep; 34(9):3489-99.
    View in: PubMed
    Score: 0.001
  34. Reduced neutron production through use of a flattening-filter-free accelerator. Int J Radiat Oncol Biol Phys. 2007 Jul 15; 68(4):1260-4.
    View in: PubMed
    Score: 0.001
  35. Determination of output factors for small proton therapy fields. Med Phys. 2007 Feb; 34(2):489-98.
    View in: PubMed
    Score: 0.001
  36. Therapeutic step and shoot proton beam spot-scanning with a multi-leaf collimator: a Monte Carlo study. Radiat Prot Dosimetry. 2005; 115(1-4):164-9.
    View in: PubMed
    Score: 0.001
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.