Connection

Co-Authors

This is a "connection" page, showing publications co-authored by GUILLERMO GARCIA-MANERO and KEYUR PRAVINCHANDRA PATEL.
  1. Clinicopathologic correlates and natural history of atypical chronic myeloid leukemia. Cancer. 2021 09 01; 127(17):3113-3124.
    View in: PubMed
    Score: 0.195
  2. Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Adv. 2020 02 11; 4(3):482-495.
    View in: PubMed
    Score: 0.180
  3. Improving the detection of patients with inherited predispositions to hematologic malignancies using next-generation sequencing-based leukemia prognostication panels. Cancer. 2018 07 01; 124(13):2704-2713.
    View in: PubMed
    Score: 0.158
  4. Evaluation of Patients and Families With Concern for Predispositions to Hematologic Malignancies Within the Hereditary Hematologic Malignancy Clinic (HHMC). Clin Lymphoma Myeloma Leuk. 2016 07; 16(7):417-428.e2.
    View in: PubMed
    Score: 0.138
  5. Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leuk Res. 2015 Dec; 39(12):1367-74.
    View in: PubMed
    Score: 0.133
  6. Sequential azacitidine and lenalidomide in patients with high-risk myelodysplastic syndromes and acute myeloid leukaemia: a single-arm, phase 1/2 study. Lancet Haematol. 2015 Jan; 2(1):e12-20.
    View in: PubMed
    Score: 0.126
  7. Dynamic acquisition of FLT3 or RAS alterations drive a subset of patients with lower risk MDS to secondary AML. Leukemia. 2013 Oct; 27(10):2081-3.
    View in: PubMed
    Score: 0.113
  8. Azacitidine, Venetoclax, and Gilteritinib in Newly Diagnosed and Relapsed or Refractory FLT3-Mutated AML. J Clin Oncol. 2024 May 01; 42(13):1499-1508.
    View in: PubMed
    Score: 0.059
  9. Venetoclax abrogates the prognostic impact of splicing factor gene mutations in newly diagnosed acute myeloid leukemia. Blood. 2023 11 09; 142(19):1647-1657.
    View in: PubMed
    Score: 0.058
  10. Characteristics and clinical outcomes of patients with myeloid malignancies and DDX41 variants. Am J Hematol. 2023 Nov; 98(11):1780-1790.
    View in: PubMed
    Score: 0.057
  11. Undetectable measurable residual disease is associated with improved outcomes in AML irrespective of treatment intensity. Blood Adv. 2023 07 11; 7(13):3284-3296.
    View in: PubMed
    Score: 0.057
  12. A phase 1/2 study of azacitidine, venetoclax and pevonedistat in newly diagnosed secondary AML and in MDS or CMML after failure of hypomethylating agents. J Hematol Oncol. 2023 07 08; 16(1):73.
    View in: PubMed
    Score: 0.057
  13. Clinical outcomes associated with NPM1 mutations in patients with relapsed or refractory AML. Blood Adv. 2023 03 28; 7(6):933-942.
    View in: PubMed
    Score: 0.056
  14. Clinicopathologic Features of Therapy-Related Myeloid Neoplasms in Patients with Myeloma in the Era of Novel Therapies. Mod Pathol. 2023 06; 36(6):100166.
    View in: PubMed
    Score: 0.056
  15. The outcomes of patients with chronic myeloid leukemia treated with third-line BCR::ABL1 tyrosine kinase inhibitors. Am J Hematol. 2023 04; 98(4):658-665.
    View in: PubMed
    Score: 0.055
  16. Prediction of survival with lower intensity therapy among older patients with acute myeloid leukemia. Cancer. 2023 04 01; 129(7):1017-1029.
    View in: PubMed
    Score: 0.055
  17. Concurrent Mutations in SF3B1 and PHF6 in Myeloid Neoplasms. Biology (Basel). 2022 Dec 21; 12(1).
    View in: PubMed
    Score: 0.055
  18. Genomic profiling for clinical decision making in?myeloid neoplasms and acute leukemia. Blood. 2022 11 24; 140(21):2228-2247.
    View in: PubMed
    Score: 0.054
  19. Hyper-CVAD and sequential blinatumomab for newly diagnosed Philadelphia chromosome-negative B-cell acute lymphocytic leukaemia: a single-arm, single-centre, phase 2 trial. Lancet Haematol. 2022 Dec; 9(12):e878-e885.
    View in: PubMed
    Score: 0.054
  20. Contemporary outcomes in IDH-mutated acute myeloid leukemia: The impact of co-occurring NPM1 mutations and venetoclax-based treatment. Am J Hematol. 2022 11; 97(11):1443-1452.
    View in: PubMed
    Score: 0.054
  21. High-sensitivity next-generation sequencing MRD assessment in ALL identifies patients at very low risk of relapse. Blood Adv. 2022 07 12; 6(13):4006-4014.
    View in: PubMed
    Score: 0.053
  22. Impact of SF3B1 mutation in myelofibrosis. Leuk Lymphoma. 2022 11; 63(11):2701-2705.
    View in: PubMed
    Score: 0.053
  23. Immunohistochemical loss of enhancer of Zeste Homolog 2 (EZH2) protein expression correlates with EZH2 alterations and portends a worse outcome in myelodysplastic syndromes. Mod Pathol. 2022 09; 35(9):1212-1219.
    View in: PubMed
    Score: 0.052
  24. Primary mediastinal germ cell tumor and clonally related and unique hematologic neoplasms with i(12p) and TP53 mutation: A report of two cases. Ann Diagn Pathol. 2022 Aug; 59:151951.
    View in: PubMed
    Score: 0.052
  25. Value of measurable residual disease monitoring in patients with acute promyelocytic leukemia in the era of frontline 'chemotherapy-free' therapy. Leuk Lymphoma. 2022 03; 63(3):672-675.
    View in: PubMed
    Score: 0.050
  26. Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. Blood Cancer J. 2021 09 29; 11(9):162.
    View in: PubMed
    Score: 0.050
  27. Incidental identification of inv(16)(p13.1q22)/CBFB-MYH11 variant transcript in a patient with therapy-related acute myeloid leukemia by routine leukemia translocation panel screen: implications for diagnosis and therapy. Cold Spring Harb Mol Case Stud. 2021 06; 7(3).
    View in: PubMed
    Score: 0.049
  28. Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia. Nat Commun. 2021 05 10; 12(1):2607.
    View in: PubMed
    Score: 0.049
  29. Author Correction: Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2021 May 10; 12(1):2823.
    View in: PubMed
    Score: 0.049
  30. Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Adv. 2021 04 27; 5(8):2173-2183.
    View in: PubMed
    Score: 0.049
  31. Correction to: Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol. 2021 Feb 23; 14(1):34.
    View in: PubMed
    Score: 0.048
  32. Next-Generation Sequencing of DDX41 in Myeloid Neoplasms Leads to Increased Detection of Germline Alterations. Front Oncol. 2020; 10:582213.
    View in: PubMed
    Score: 0.048
  33. Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 inhibitors. Blood Cancer Discov. 2021 03; 2(2):125-134.
    View in: PubMed
    Score: 0.048
  34. Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Adv. 2020 11 24; 4(22):5681-5689.
    View in: PubMed
    Score: 0.047
  35. Publisher Correction: Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020 Nov 19; 11(1):5996.
    View in: PubMed
    Score: 0.047
  36. Clinical characteristics and outcomes in patients with acute myeloid leukemia with concurrent FLT3-ITD and IDH mutations. Cancer. 2021 02 01; 127(3):381-390.
    View in: PubMed
    Score: 0.047
  37. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020 10 21; 11(1):5327.
    View in: PubMed
    Score: 0.047
  38. Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol. 2020 10 08; 13(1):132.
    View in: PubMed
    Score: 0.047
  39. Clonal evolution and treatment outcomes in hematopoietic neoplasms arising in patients with germline RUNX1 mutations. Am J Hematol. 2020 11; 95(11):E313-E315.
    View in: PubMed
    Score: 0.047
  40. The Clinical impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia. 2021 03; 35(3):691-700.
    View in: PubMed
    Score: 0.046
  41. Targeted next-generation sequencing of circulating cell-free DNA vs bone marrow in patients with acute myeloid leukemia. Blood Adv. 2020 04 28; 4(8):1670-1677.
    View in: PubMed
    Score: 0.046
  42. Clinico-pathologic characteristics and outcomes of the World Health Organization (WHO) provisional entity de novo acute myeloid leukemia with mutated RUNX1. Mod Pathol. 2020 09; 33(9):1678-1689.
    View in: PubMed
    Score: 0.045
  43. Long-term results of frontline dasatinib in chronic myeloid leukemia. Cancer. 2020 04 01; 126(7):1502-1511.
    View in: PubMed
    Score: 0.045
  44. Long-term results of a phase 2 trial of nilotinib 400?mg twice daily in newly diagnosed patients with chronic-phase chronic myeloid leukemia. Cancer. 2020 04 01; 126(7):1448-1459.
    View in: PubMed
    Score: 0.045
  45. Successful lenalidomide treatment in high risk myelodysplastic syndrome with germline DDX41 mutation. Am J Hematol. 2020 02; 95(2):227-229.
    View in: PubMed
    Score: 0.043
  46. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am J Hematol. 2019 07; 94(7):757-766.
    View in: PubMed
    Score: 0.043
  47. New Tool for Monitoring Molecular Response in Patients With Chronic Myeloid Leukemia. Appl Immunohistochem Mol Morphol. 2019 01; 27(1):33-39.
    View in: PubMed
    Score: 0.042
  48. Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study. Cancer Discov. 2019 03; 9(3):370-383.
    View in: PubMed
    Score: 0.041
  49. Mutational landscape of myelodysplastic/myeloproliferative neoplasm-unclassifiable. Blood. 2018 11 08; 132(19):2100-2103.
    View in: PubMed
    Score: 0.041
  50. A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis. Blood. 2018 10 18; 132(16):1664-1674.
    View in: PubMed
    Score: 0.041
  51. Response kinetics and factors predicting survival in core-binding factor leukemia. Leukemia. 2018 12; 32(12):2698-2701.
    View in: PubMed
    Score: 0.040
  52. Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. J Clin Oncol. 2018 06 20; 36(18):1788-1797.
    View in: PubMed
    Score: 0.040
  53. Clinical implications of cancer gene mutations in patients with chronic lymphocytic leukemia treated with lenalidomide. Blood. 2018 04 19; 131(16):1820-1832.
    View in: PubMed
    Score: 0.039
  54. Myeloid/lymphoid neoplasms with FGFR1 rearrangement. Leuk Lymphoma. 2018 07; 59(7):1672-1676.
    View in: PubMed
    Score: 0.038
  55. Characterization of TP53 mutations in low-grade myelodysplastic syndromes and myelodysplastic syndromes with a non-complex karyotype. Eur J Haematol. 2017 Dec; 99(6):536-543.
    View in: PubMed
    Score: 0.038
  56. Chronic myelomonocytic leukemia masquerading as cutaneous indeterminate dendritic cell tumor: Expanding the spectrum of skin lesions in chronic myelomonocytic leukemia. J Cutan Pathol. 2017 Dec; 44(12):1075-1079.
    View in: PubMed
    Score: 0.038
  57. TP53 mutation does not confer a poor outcome in adult patients with acute lymphoblastic leukemia who are treated with frontline hyper-CVAD-based regimens. Cancer. 2017 Oct 01; 123(19):3717-3724.
    View in: PubMed
    Score: 0.037
  58. Whole-arm translocation of der(5;17)(p10;q10) with concurrent TP53 mutations in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS): A unique molecular-cytogenetic subgroup. Cancer Genet. 2016 05; 209(5):205-14.
    View in: PubMed
    Score: 0.034
  59. Myeloid neoplasms with isolated isochromosome 17q demonstrate a high frequency of mutations in SETBP1, SRSF2, ASXL1 and NRAS. Oncotarget. 2016 Mar 22; 7(12):14251-8.
    View in: PubMed
    Score: 0.034
  60. Myelodysplastic syndromes following therapy with hypomethylating agents (HMAs): development of acute erythroleukemia may not influence assessment of treatment response. Leuk Lymphoma. 2016; 57(4):812-9.
    View in: PubMed
    Score: 0.034
  61. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015 Aug; 90(8):732-6.
    View in: PubMed
    Score: 0.033
  62. TP53 mutation characteristics in therapy-related myelodysplastic syndromes and acute myeloid leukemia is similar to de novo diseases. J Hematol Oncol. 2015 May 08; 8:45.
    View in: PubMed
    Score: 0.032
  63. Characteristics of Sweet Syndrome in patients with acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2015 Jun; 15(6):358-363.
    View in: PubMed
    Score: 0.031
  64. Mutational profiling of therapy-related myelodysplastic syndromes and acute myeloid leukemia by next generation sequencing, a comparison with de novo diseases. Leuk Res. 2015 Mar; 39(3):348-54.
    View in: PubMed
    Score: 0.031
  65. BRAF kinase domain mutations are present in a subset of chronic myelomonocytic leukemia with wild-type RAS. Am J Hematol. 2014 May; 89(5):499-504.
    View in: PubMed
    Score: 0.030
  66. Lack of association of IDH1, IDH2 and DNMT3A mutations with outcome in older patients with acute myeloid leukemia treated with hypomethylating agents. Leuk Lymphoma. 2014 Aug; 55(8):1925-9.
    View in: PubMed
    Score: 0.030
  67. Mutated NPM1 in patients with acute myeloid leukemia in remission and relapse. Leuk Lymphoma. 2014 Jun; 55(6):1337-44.
    View in: PubMed
    Score: 0.029
  68. Application of the international prognostic scoring system-revised in therapy-related myelodysplastic syndromes and oligoblastic acute myeloid leukemia. Leukemia. 2014 Jan; 28(1):185-9.
    View in: PubMed
    Score: 0.028
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.