Connection

Co-Authors

This is a "connection" page, showing publications co-authored by MARINA KONOPLEVA and KIRAN NAQVI.
Connection Strength

2.287
  1. Glutaminase inhibition in combination with azacytidine in myelodysplastic syndromes: a phase 1b/2 clinical trial and correlative analyses. Nat Cancer. 2024 Oct; 5(10):1515-1533.
    View in: PubMed
    Score: 0.248
  2. Glutaminase inhibition in combination with azacytidine in myelodysplastic syndromes: Clinical efficacy and correlative analyses. Res Sq. 2023 Feb 23.
    View in: PubMed
    Score: 0.222
  3. Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens. Haematologica. 2021 03 01; 106(3):894-898.
    View in: PubMed
    Score: 0.194
  4. Venetoclax with decitabine vs intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatment-related mortality. Am J Hematol. 2021 03 01; 96(3):282-291.
    View in: PubMed
    Score: 0.191
  5. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematol. 2020 Oct; 7(10):e724-e736.
    View in: PubMed
    Score: 0.187
  6. Neurotoxic events associated with BCR-ABL1 tyrosine kinase inhibitors: a case series. Leuk Lymphoma. 2019 12; 60(13):3292-3295.
    View in: PubMed
    Score: 0.172
  7. Initial Report of a Phase I Study of LY2510924, Idarubicin, and Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia. Front Oncol. 2018; 8:369.
    View in: PubMed
    Score: 0.164
  8. Targeted therapies in Acute Myeloid Leukemia: a focus on FLT-3 inhibitors and ABT199. Expert Rev Hematol. 2017 10; 10(10):863-874.
    View in: PubMed
    Score: 0.152
  9. Isavuconazole as Primary Antifungal Prophylaxis in Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome: An Open-label, Prospective, Phase 2 Study. Clin Infect Dis. 2021 05 18; 72(10):1755-1763.
    View in: PubMed
    Score: 0.049
  10. Clinicopathologic correlates and natural history of atypical chronic myeloid leukemia. Cancer. 2021 09 01; 127(17):3113-3124.
    View in: PubMed
    Score: 0.049
  11. Activity of venetoclax-based therapy in chronic myelomonocytic leukemia. Leukemia. 2021 05; 35(5):1494-1499.
    View in: PubMed
    Score: 0.049
  12. Next-Generation Sequencing of DDX41 in Myeloid Neoplasms Leads to Increased Detection of Germline Alterations. Front Oncol. 2020; 10:582213.
    View in: PubMed
    Score: 0.048
  13. The LEukemia Artificial Intelligence Program (LEAP) in chronic myeloid leukemia in chronic phase: A model to improve patient outcomes. Am J Hematol. 2021 02 01; 96(2):241-250.
    View in: PubMed
    Score: 0.048
  14. Clinical outcomes and influence of mutation clonal dominance in oligomonocytic and classical chronic myelomonocytic leukemia. Am J Hematol. 2021 02 01; 96(2):E50-E53.
    View in: PubMed
    Score: 0.048
  15. Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens. Blood Adv. 2020 04 14; 4(7):1311-1320.
    View in: PubMed
    Score: 0.046
  16. Venetoclax and BCR-ABL Tyrosine Kinase Inhibitor Combinations: Outcome in Patients with Philadelphia Chromosome-Positive Advanced Myeloid Leukemias. Acta Haematol. 2020; 143(6):567-573.
    View in: PubMed
    Score: 0.046
  17. Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am J Hematol. 2020 06; 95(6):612-622.
    View in: PubMed
    Score: 0.045
  18. Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Adv. 2020 02 11; 4(3):482-495.
    View in: PubMed
    Score: 0.045
  19. Prognostic significance of baseline FLT3-ITD mutant allele level in acute myeloid leukemia treated with intensive chemotherapy with/without sorafenib. Am J Hematol. 2019 09; 94(9):984-991.
    View in: PubMed
    Score: 0.043
  20. Unrecognized fluid overload during induction therapy increases morbidity in patients with acute promyelocytic leukemia. Cancer. 2019 09 15; 125(18):3219-3224.
    View in: PubMed
    Score: 0.043
  21. Intensive chemotherapy is more effective than hypomethylating agents for the treatment of younger patients with myelodysplastic syndrome and elevated bone marrow blasts. Am J Hematol. 2019 07; 94(7):E188-E190.
    View in: PubMed
    Score: 0.043
  22. Validation of the 2017 European LeukemiaNet classification for acute myeloid leukemia with NPM1 and FLT3-internal tandem duplication genotypes. Cancer. 2019 04 01; 125(7):1091-1100.
    View in: PubMed
    Score: 0.041
  23. A phase II study of omacetaxine mepesuccinate for patients with higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia after failure of hypomethylating agents. Am J Hematol. 2019 01; 94(1):74-79.
    View in: PubMed
    Score: 0.041
  24. Clinical Outcomes and Co-Occurring Mutations in Patients with RUNX1-Mutated Acute Myeloid Leukemia. Int J Mol Sci. 2017 Jul 26; 18(8).
    View in: PubMed
    Score: 0.038
  25. Peripheral blood blast clearance is an independent prognostic factor for survival and response to acute myeloid leukemia induction chemotherapy. Am J Hematol. 2016 12; 91(12):1221-1226.
    View in: PubMed
    Score: 0.035
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.