Connection

RITSUKO KOMAKI to Adenocarcinoma

This is a "connection" page, showing publications RITSUKO KOMAKI has written about Adenocarcinoma.
Connection Strength

1.935
  1. Local Control and Toxicity of a Simultaneous Integrated Boost for Dose Escalation in Locally Advanced Esophageal Cancer: Interim Results from a Prospective Phase I/II Trial. J Thorac Oncol. 2017 02; 12(2):375-382.
    View in: PubMed
    Score: 0.156
  2. Esophageal cancer dose escalation using a simultaneous integrated boost technique. Int J Radiat Oncol Biol Phys. 2012 Jan 01; 82(1):468-74.
    View in: PubMed
    Score: 0.104
  3. Esophageal cancer located at the neck and upper thorax treated with concurrent chemoradiation: a single-institution experience. J Thorac Oncol. 2006 Mar; 1(3):252-9.
    View in: PubMed
    Score: 0.075
  4. Postoperative pulmonary complications after preoperative chemoradiation for esophageal carcinoma: correlation with pulmonary dose-volume histogram parameters. Int J Radiat Oncol Biol Phys. 2003 Dec 01; 57(5):1317-22.
    View in: PubMed
    Score: 0.064
  5. Recurrence Risk Stratification After Preoperative Chemoradiation of Esophageal Adenocarcinoma. Ann Surg. 2018 08; 268(2):289-295.
    View in: PubMed
    Score: 0.044
  6. Actionable Locoregional Relapses after Therapy of Localized Esophageal Cancer: Insights from a Large Cohort. Oncology. 2018; 94(6):345-353.
    View in: PubMed
    Score: 0.043
  7. Pathological complete response in patients with esophageal cancer after the trimodality approach: The association with baseline variables and survival-The University of Texas MD Anderson Cancer Center experience. Cancer. 2017 Nov 01; 123(21):4106-4113.
    View in: PubMed
    Score: 0.041
  8. The impact of histology on recurrence patterns in esophageal cancer treated with definitive chemoradiotherapy. Radiother Oncol. 2017 08; 124(2):318-324.
    View in: PubMed
    Score: 0.041
  9. Lymphocyte Nadir and Esophageal Cancer Survival Outcomes After Chemoradiation Therapy. Int J Radiat Oncol Biol Phys. 2017 09 01; 99(1):128-135.
    View in: PubMed
    Score: 0.041
  10. 18F-FDG PET Response After Induction Chemotherapy Can Predict Who Will Benefit from Subsequent Esophagectomy After Chemoradiotherapy for Esophageal Adenocarcinoma. J Nucl Med. 2017 11; 58(11):1756-1763.
    View in: PubMed
    Score: 0.041
  11. 7-year follow-up after stereotactic ablative radiotherapy for patients with stage I non-small cell lung cancer: Results of a phase 2 clinical trial. Cancer. 2017 Aug 15; 123(16):3031-3039.
    View in: PubMed
    Score: 0.040
  12. Long-Term Outcomes of Salvage Stereotactic Ablative?Radiotherapy for Isolated Lung Recurrence of Non-Small Cell Lung Cancer: A Phase II Clinical Trial. J Thorac Oncol. 2017 06; 12(6):983-992.
    View in: PubMed
    Score: 0.040
  13. Final Results of NRG Oncology RTOG 0246: An?Organ-Preserving Selective Resection Strategy in?Esophageal Cancer Patients Treated with Definitive?Chemoradiation. J Thorac Oncol. 2017 02; 12(2):368-374.
    View in: PubMed
    Score: 0.039
  14. Factors Predictive of Improved Outcomes With Multimodality Local Therapy After Palliative Chemotherapy for Stage IV Esophageal Cancer. Am J Clin Oncol. 2016 06; 39(3):228-35.
    View in: PubMed
    Score: 0.038
  15. Primary tumour standardised uptake value is prognostic in nonsmall cell lung cancer: a multivariate pooled analysis of individual data. Eur Respir J. 2015 Dec; 46(6):1751-61.
    View in: PubMed
    Score: 0.036
  16. Adding Erlotinib to Chemoradiation Improves Overall Survival but Not Progression-Free Survival in Stage III Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2015 Jun 01; 92(2):317-24.
    View in: PubMed
    Score: 0.035
  17. Distribution of Resistant Esophageal Adenocarcinoma in the Resected Specimens of Clinical Stage III Patients after Chemoradiation: Its Clinical Implications. Oncology. 2015; 89(2):65-9.
    View in: PubMed
    Score: 0.035
  18. Geographic distribution of regional metastatic nodes affects the outcome of trimodality-eligible patients with esophageal adenocarcinoma. Oncology. 2015; 88(6):332-6.
    View in: PubMed
    Score: 0.035
  19. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015 Feb; 16(2):187-99.
    View in: PubMed
    Score: 0.034
  20. A validated miRNA profile predicts response to therapy in esophageal adenocarcinoma. Cancer. 2014 Dec 01; 120(23):3635-41.
    View in: PubMed
    Score: 0.033
  21. Post-chemoradiation surgical pathology stage can customize the surveillance strategy in patients with esophageal adenocarcinoma. J Natl Compr Canc Netw. 2014 Aug; 12(8):1139-44.
    View in: PubMed
    Score: 0.033
  22. Clinical staging of patients with early esophageal adenocarcinoma: does FDG-PET/CT have a role? J Thorac Oncol. 2014 Aug; 9(8):1202-6.
    View in: PubMed
    Score: 0.033
  23. Factors associated with local-regional failure after definitive chemoradiation for locally advanced esophageal cancer. Ann Surg Oncol. 2014 Jan; 21(1):306-14.
    View in: PubMed
    Score: 0.032
  24. Locoregional failure rate after preoperative chemoradiation of esophageal adenocarcinoma and the outcomes of salvage strategies. J Clin Oncol. 2013 Dec 01; 31(34):4306-10.
    View in: PubMed
    Score: 0.032
  25. Incidence of brain metastases after trimodality therapy in patients with esophageal or gastroesophageal cancer: implications for screening and surveillance. Oncology. 2013; 85(4):204-7.
    View in: PubMed
    Score: 0.031
  26. Propensity-based matching between esophagogastric cancer patients who had surgery and who declined surgery after preoperative chemoradiation. Oncology. 2013; 85(2):95-9.
    View in: PubMed
    Score: 0.031
  27. Surgery is an essential component of multimodality therapy for patients with locally advanced esophageal adenocarcinoma. J Gastrointest Surg. 2013 Aug; 17(8):1359-69.
    View in: PubMed
    Score: 0.031
  28. Metformin use and improved response to therapy in esophageal adenocarcinoma. Acta Oncol. 2013 Jun; 52(5):1002-9.
    View in: PubMed
    Score: 0.029
  29. Quantifying the interfractional displacement of the gastroesophageal junction during radiation therapy for esophageal cancer. Int J Radiat Oncol Biol Phys. 2012 Jun 01; 83(2):e273-80.
    View in: PubMed
    Score: 0.028
  30. Proton beam therapy and concurrent chemotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys. 2012 Jul 01; 83(3):e345-51.
    View in: PubMed
    Score: 0.028
  31. A Phase II study of a paclitaxel-based chemoradiation regimen with selective surgical salvage for resectable locoregionally advanced esophageal cancer: initial reporting of RTOG 0246. Int J Radiat Oncol Biol Phys. 2012 Apr 01; 82(5):1967-72.
    View in: PubMed
    Score: 0.027
  32. Combined modality therapy of cT2N0M0 esophageal cancer: the University of Texas M. D. Anderson Cancer Center experience. Cancer. 2011 Mar 01; 117(5):925-30.
    View in: PubMed
    Score: 0.026
  33. Trimodality therapy without a platinum compound for localized carcinoma of the esophagus and gastroesophageal junction. Cancer. 2010 Apr 01; 116(7):1656-63.
    View in: PubMed
    Score: 0.025
  34. Impact of tumor length on long-term survival of pT1 esophageal adenocarcinoma. J Thorac Cardiovasc Surg. 2009 Oct; 138(4):831-6.
    View in: PubMed
    Score: 0.023
  35. Frequent loss of heterozygosity of chromosome 1q in esophageal adenocarcinoma: loss of chromosome 1q21.3 is associated with shorter overall survival. Cancer. 2009 Apr 01; 115(7):1576-85.
    View in: PubMed
    Score: 0.023
  36. Patterns of care and locoregional treatment outcomes in older esophageal cancer patients: The SEER-Medicare Cohort. Int J Radiat Oncol Biol Phys. 2009 Jun 01; 74(2):482-9.
    View in: PubMed
    Score: 0.023
  37. Influence of the baseline 18F-fluoro-2-deoxy-D-glucose positron emission tomography results on survival and pathologic response in patients with gastroesophageal cancer undergoing chemoradiation. Cancer. 2009 Feb 01; 115(3):624-30.
    View in: PubMed
    Score: 0.023
  38. Elevated phospho-S6 expression is associated with metastasis in adenocarcinoma of the lung. Clin Cancer Res. 2008 Dec 01; 14(23):7832-7.
    View in: PubMed
    Score: 0.023
  39. Pathological analysis of clinical target volume margin for radiotherapy in patients with esophageal and gastroesophageal junction carcinoma. Int J Radiat Oncol Biol Phys. 2007 Feb 01; 67(2):389-96.
    View in: PubMed
    Score: 0.020
  40. Detection of interval distant metastases: clinical utility of integrated CT-PET imaging in patients with esophageal carcinoma after neoadjuvant therapy. Cancer. 2007 Jan 01; 109(1):125-34.
    View in: PubMed
    Score: 0.020
  41. Hedgehog: an attribute to tumor regrowth after chemoradiotherapy and a target to improve radiation response. Clin Cancer Res. 2006 Nov 01; 12(21):6565-72.
    View in: PubMed
    Score: 0.020
  42. The significance of neuroendocrine differentiation in adenocarcinoma of the esophagus and esophagogastric junction after preoperative chemoradiation. Cancer. 2006 Oct 01; 107(7):1467-74.
    View in: PubMed
    Score: 0.019
  43. The addition of induction chemotherapy to preoperative, concurrent chemoradiotherapy improves tumor response in patients with esophageal adenocarcinoma. Cancer. 2006 Sep 01; 107(5):967-74.
    View in: PubMed
    Score: 0.019
  44. Tumor-specific apoptotic gene targeting overcomes radiation resistance in esophageal adenocarcinoma. Int J Radiat Oncol Biol Phys. 2006 Apr 01; 64(5):1482-94.
    View in: PubMed
    Score: 0.019
  45. The number of lymph nodes with metastasis predicts survival in patients with esophageal or esophagogastric junction adenocarcinoma who receive preoperative chemoradiation. Cancer. 2006 Mar 01; 106(5):1017-25.
    View in: PubMed
    Score: 0.019
  46. Histologic subtypes as determinants of outcome in esophageal carcinoma patients with pathologic complete response after preoperative chemoradiotherapy. Cancer. 2006 Feb 01; 106(3):552-8.
    View in: PubMed
    Score: 0.019
  47. Endoscopic ultrasonography-identified celiac adenopathy remains a poor prognostic factor despite preoperative chemoradiotherapy in esophageal adenocarcinoma. J Thorac Cardiovasc Surg. 2006 Jan; 131(1):65-72.
    View in: PubMed
    Score: 0.018
  48. Polymorphism at the 3'-UTR of the thymidylate synthase gene: a potential predictor for outcomes in Caucasian patients with esophageal adenocarcinoma treated with preoperative chemoradiation. Int J Radiat Oncol Biol Phys. 2006 Mar 01; 64(3):700-8.
    View in: PubMed
    Score: 0.018
  49. Proposed revision of the esophageal cancer staging system to accommodate pathologic response (pP) following preoperative chemoradiation (CRT). Ann Surg. 2005 May; 241(5):810-7; discussion 817-20.
    View in: PubMed
    Score: 0.018
  50. Differential response to preoperative chemoradiation and surgery in esophageal adenocarcinomas based on presence of Barrett's esophagus and symptomatic gastroesophageal reflux. Ann Thorac Surg. 2005 May; 79(5):1716-23.
    View in: PubMed
    Score: 0.018
  51. Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys. 2005 Feb 01; 61(2):318-28.
    View in: PubMed
    Score: 0.017
  52. Esophagectomy after concurrent chemoradiotherapy improves locoregional control in clinical stage II or III esophageal cancer patients. Int J Radiat Oncol Biol Phys. 2004 Dec 01; 60(5):1484-93.
    View in: PubMed
    Score: 0.017
  53. 2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer. 2004 Oct 15; 101(8):1776-85.
    View in: PubMed
    Score: 0.017
  54. Utility of PET, CT, and EUS to identify pathologic responders in esophageal cancer. Ann Thorac Surg. 2004 Oct; 78(4):1152-60; discussion 1152-60.
    View in: PubMed
    Score: 0.017
  55. Treatment outcomes of resected esophageal cancer. Ann Surg. 2002 Sep; 236(3):376-84; discussion 384-5.
    View in: PubMed
    Score: 0.015
  56. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol. 2002 Mar 01; 20(5):1167-74.
    View in: PubMed
    Score: 0.014
  57. A Prognostic Scoring Model for the Utility of Induction Chemotherapy Prior to Neoadjuvant Chemoradiotherapy in Esophageal Cancer. J Thorac Oncol. 2017 06; 12(6):1001-1010.
    View in: PubMed
    Score: 0.010
  58. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst. 2016 Jan; 108(1).
    View in: PubMed
    Score: 0.009
  59. Comparison of locoregional versus extended locoregional radiation volumes for patients with nonmetastatic gastro-esophageal junction carcinomas. J Thorac Oncol. 2015 Mar; 10(3):518-26.
    View in: PubMed
    Score: 0.009
  60. Definitive reirradiation for locoregionally recurrent non-small cell lung cancer with proton beam therapy or intensity modulated radiation therapy: predictors of high-grade toxicity and survival outcomes. Int J Radiat Oncol Biol Phys. 2014 Nov 15; 90(4):819-27.
    View in: PubMed
    Score: 0.008
  61. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes. Int J Radiat Oncol Biol Phys. 2014 Aug 01; 89(5):1084-1091.
    View in: PubMed
    Score: 0.008
  62. Predictors of postoperative complications after trimodality therapy for esophageal cancer. Int J Radiat Oncol Biol Phys. 2013 Aug 01; 86(5):885-91.
    View in: PubMed
    Score: 0.008
  63. Prognostic impact of radiation therapy to the primary tumor in patients with non-small cell lung cancer and oligometastasis at diagnosis. Int J Radiat Oncol Biol Phys. 2012 Sep 01; 84(1):e61-7.
    View in: PubMed
    Score: 0.007
  64. Genotypes and haplotypes of the VEGF gene and survival in locally advanced non-small cell lung cancer patients treated with chemoradiotherapy. BMC Cancer. 2010 Aug 16; 10:431.
    View in: PubMed
    Score: 0.006
  65. Targeted therapy of orthotopic human lung cancer by combined vascular endothelial growth factor and epidermal growth factor receptor signaling blockade. Mol Cancer Ther. 2007 Feb; 6(2):471-83.
    View in: PubMed
    Score: 0.005
  66. Characterization of pathologic complete response after preoperative chemoradiotherapy in carcinoma of the esophagus and outcome after pathologic complete response. Cancer. 2005 Dec 01; 104(11):2365-72.
    View in: PubMed
    Score: 0.005
  67. Value of baseline positron emission tomography for predicting overall survival in patient with nonmetastatic esophageal or gastroesophageal junction carcinoma. Cancer. 2005 Oct 15; 104(8):1620-6.
    View in: PubMed
    Score: 0.005
  68. Preoperative chemoradiotherapy prior to esophagectomy in elderly patients is not associated with increased morbidity. Ann Thorac Surg. 2005 Feb; 79(2):391-7; discussionn 391-7.
    View in: PubMed
    Score: 0.004
  69. Endoscopic ultrasound after preoperative chemoradiation can help identify patients who benefit maximally after surgical esophageal resection. Am J Gastroenterol. 2004 Jul; 99(7):1258-66.
    View in: PubMed
    Score: 0.004
  70. Preoperative induction of CPT-11 and cisplatin chemotherapy followed by chemoradiotherapy in patients with locoregional carcinoma of the esophagus or gastroesophageal junction. Cancer. 2004 Jun 01; 100(11):2347-54.
    View in: PubMed
    Score: 0.004
  71. Long-term outcome of phase II trial evaluating chemotherapy, chemoradiotherapy, and surgery for locoregionally advanced esophageal cancer. Int J Radiat Oncol Biol Phys. 2003 Sep 01; 57(1):120-7.
    View in: PubMed
    Score: 0.004
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.