Connection

Co-Authors

This is a "connection" page, showing publications co-authored by ADAM S GARDEN and DAVID ROSENTHAL.
Connection Strength

13.832
  1. Multi-Specialty Expert Physician Identification of Extranodal Extension in Computed Tomography Scans of Oropharyngeal Cancer Patients: Prospective Blinded Human Inter-Observer Performance Evaluation. medRxiv. 2023 Feb 26.
    View in: PubMed
    Score: 0.924
  2. Patterns of disease recurrence following treatment of oropharyngeal cancer with intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2013 Mar 15; 85(4):941-7.
    View in: PubMed
    Score: 0.447
  3. Beam path toxicities to non-target structures during intensity-modulated radiation therapy for head and neck cancer. Int J Radiat Oncol Biol Phys. 2008 Nov 01; 72(3):747-55.
    View in: PubMed
    Score: 0.331
  4. Sinonasal malignancies with neuroendocrine differentiation: patterns of failure according to histologic phenotype. Cancer. 2004 Dec 01; 101(11):2567-73.
    View in: PubMed
    Score: 0.261
  5. Unilateral Radiation Therapy for Tonsillar Cancer: Treatment Outcomes in the Era of Human Papillomavirus, Positron-Emission Tomography, and Intensity Modulated Radiation Therapy. Int J Radiat Oncol Biol Phys. 2022 08 01; 113(5):1054-1062.
    View in: PubMed
    Score: 0.218
  6. Bioelectrical impedance analysis as a quantitative measure of sarcopenia in head and neck cancer patients treated with radiotherapy. Radiother Oncol. 2021 06; 159:21-27.
    View in: PubMed
    Score: 0.202
  7. Outcomes after salvage for HPV-positive recurrent oropharyngeal cancer treated with primary radiation. Oral Oncol. 2021 02; 113:105125.
    View in: PubMed
    Score: 0.199
  8. Conditional survival among patients with oropharyngeal cancer treated with radiation therapy and alive without recurrence 5 years after diagnosis. Cancer. 2021 04 15; 127(8):1228-1237.
    View in: PubMed
    Score: 0.198
  9. Prognostic significance of pre-treatment neutrophil-to-lymphocyte ratio (NLR) in patients with oropharyngeal cancer treated with radiotherapy. Br J Cancer. 2021 02; 124(3):628-633.
    View in: PubMed
    Score: 0.196
  10. Outcomes after radiation therapy for T2N0/stage II glottic squamous cell carcinoma. Head Neck. 2020 10; 42(10):2791-2800.
    View in: PubMed
    Score: 0.191
  11. Patterns of Failure After Intensity Modulated Radiation Therapy in Head and Neck Squamous Cell Carcinoma of Unknown Primary: Implication of Elective Nodal and Mucosal Dose Coverage. Adv Radiat Oncol. 2020 Sep-Oct; 5(5):929-935.
    View in: PubMed
    Score: 0.190
  12. Neurologic sequelae following radiation with and without chemotherapy for oropharyngeal cancer: Patient reported outcomes study. Head Neck. 2020 08; 42(8):2137-2144.
    View in: PubMed
    Score: 0.189
  13. Lymphopenia during radiotherapy in patients with oropharyngeal cancer. Radiother Oncol. 2020 04; 145:95-100.
    View in: PubMed
    Score: 0.186
  14. Risk of second primary malignancies in head and neck cancer patients treated with definitive radiotherapy. NPJ Precis Oncol. 2019; 3:22.
    View in: PubMed
    Score: 0.182
  15. Usefulness of surveillance imaging in patients with head and neck cancer who are treated with definitive radiotherapy. Cancer. 2019 06 01; 125(11):1823-1829.
    View in: PubMed
    Score: 0.175
  16. Outcomes of carotid-sparing IMRT for T1 glottic cancer: Comparison with conventional radiation. Laryngoscope. 2020 01; 130(1):146-153.
    View in: PubMed
    Score: 0.175
  17. Significance of Negative Posttreatment 18-FDG PET/CT Imaging in Patients With p16/HPV-Positive Oropharyngeal Cancer. Int J Radiat Oncol Biol Phys. 2018 11 15; 102(4):1029-1035.
    View in: PubMed
    Score: 0.167
  18. Three-dimensional imaging assessment of anatomic invasion and volumetric considerations for chemo/radiotherapy-based laryngeal preservation in T3 larynx cancer. Oral Oncol. 2018 04; 79:1-8.
    View in: PubMed
    Score: 0.163
  19. Outcomes of patients diagnosed with carcinoma metastatic to the neck from an unknown primary source and treated with intensity-modulated radiation therapy. Cancer. 2018 04 01; 124(7):1415-1427.
    View in: PubMed
    Score: 0.162
  20. Patterns of locoregional failure following post-operative intensity-modulated radiotherapy to oral cavity cancer: quantitative spatial and dosimetric analysis using a deformable image registration workflow. Radiat Oncol. 2017 Aug 15; 12(1):129.
    View in: PubMed
    Score: 0.157
  21. Outcomes of oral cavity cancer patients treated with surgery followed by postoperative intensity modulated radiation therapy. Oral Oncol. 2017 09; 72:90-97.
    View in: PubMed
    Score: 0.156
  22. Final Report of a Prospective Randomized Trial to Evaluate the Dose-Response Relationship for Postoperative Radiation Therapy and Pathologic Risk Groups in Patients With Head and Neck?Cancer. Int J Radiat Oncol Biol Phys. 2017 08 01; 98(5):1002-1011.
    View in: PubMed
    Score: 0.156
  23. Recurrent oral cavity cancer: Patterns of failure after salvage multimodality therapy. Head Neck. 2017 04; 39(4):633-638.
    View in: PubMed
    Score: 0.150
  24. Prospective Qualitative and Quantitative Analysis of Real-Time Peer Review Quality Assurance Rounds Incorporating Direct Physical Examination for Head and Neck Cancer Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017 07 01; 98(3):532-540.
    View in: PubMed
    Score: 0.150
  25. Quantitative body mass characterization before and after head and neck cancer radiotherapy: A challenge of height-weight formulae using computed tomography measurement. Oral Oncol. 2016 10; 61:62-9.
    View in: PubMed
    Score: 0.147
  26. Long-term outcomes after multidisciplinary management of T3 laryngeal squamous cell carcinomas: Improved functional outcomes and survival with modern therapeutic approaches. Head Neck. 2016 12; 38(12):1739-1751.
    View in: PubMed
    Score: 0.146
  27. Reply to radiotherapy for human papillomavirus-positive oropharyngeal cancers in the National Cancer Data Base. Cancer. 2016 11 15; 122(21):3411-3412.
    View in: PubMed
    Score: 0.146
  28. Association of Body Composition With Survival and Locoregional Control of Radiotherapy-Treated Head and Neck Squamous Cell Carcinoma. JAMA Oncol. 2016 Jun 01; 2(6):782-9.
    View in: PubMed
    Score: 0.145
  29. Radiation therapy (with or without neck surgery) for phenotypic human papillomavirus-associated oropharyngeal cancer. Cancer. 2016 06 01; 122(11):1702-7.
    View in: PubMed
    Score: 0.143
  30. Comparison of systemic therapies used concurrently with radiation for the treatment of human papillomavirus-associated oropharyngeal cancer. Head Neck. 2016 04; 38 Suppl 1:E1554-61.
    View in: PubMed
    Score: 0.140
  31. Favorable patient reported outcomes following IMRT for early carcinomas of the tonsillar fossa: Results from a symptom assessment study. Radiother Oncol. 2015 Oct; 117(1):132-8.
    View in: PubMed
    Score: 0.138
  32. Long-term outcomes after surgical or nonsurgical initial therapy for patients with T4 squamous cell carcinoma of the larynx: A 3-decade survey. Cancer. 2015 May 15; 121(10):1608-19.
    View in: PubMed
    Score: 0.132
  33. A multi-institution pooled analysis of gastrostomy tube dependence in patients with oropharyngeal cancer treated with definitive intensity-modulated radiotherapy. Cancer. 2015 Jan 15; 121(2):294-301.
    View in: PubMed
    Score: 0.129
  34. Management of the lymph node-positive neck in the patient with human papillomavirus-associated oropharyngeal cancer. Cancer. 2014 Oct 01; 120(19):3082-8.
    View in: PubMed
    Score: 0.126
  35. Patterns of symptom burden during radiotherapy or concurrent chemoradiotherapy for head and neck cancer: a prospective analysis using the University of Texas MD Anderson Cancer Center Symptom Inventory-Head and Neck Module. Cancer. 2014 Jul 01; 120(13):1975-84.
    View in: PubMed
    Score: 0.125
  36. The impact of radiographic retropharyngeal adenopathy in oropharyngeal cancer. Cancer. 2013 Sep 01; 119(17):3162-9.
    View in: PubMed
    Score: 0.118
  37. Outcomes and patterns of care of patients with locally advanced oropharyngeal carcinoma treated in the early 21st century. Radiat Oncol. 2013 Jan 29; 8:21.
    View in: PubMed
    Score: 0.115
  38. Prediction of neck dissection requirement after definitive radiotherapy for head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2012 Mar 01; 82(3):e367-74.
    View in: PubMed
    Score: 0.108
  39. Unilateral radiotherapy for the treatment of tonsil cancer. Int J Radiat Oncol Biol Phys. 2012 May 01; 83(1):204-9.
    View in: PubMed
    Score: 0.105
  40. Outcomes of patients with tonsillar carcinoma treated with post-tonsillectomy radiation therapy. Head Neck. 2010 Apr; 32(4):473-80.
    View in: PubMed
    Score: 0.094
  41. Intensity-modulated radiotherapy for cervical node squamous cell carcinoma metastases from unknown head-and-neck primary site: M. D. Anderson Cancer Center outcomes and patterns of failure. Int J Radiat Oncol Biol Phys. 2010 Nov 15; 78(4):1005-10.
    View in: PubMed
    Score: 0.094
  42. Early postoperative paclitaxel followed by concurrent paclitaxel and cisplatin with radiation therapy for patients with resected high-risk head and neck squamous cell carcinoma: report of the phase II trial RTOG 0024. J Clin Oncol. 2009 Oct 01; 27(28):4727-32.
    View in: PubMed
    Score: 0.091
  43. Simple carotid-sparing intensity-modulated radiotherapy technique and preliminary experience for T1-2 glottic cancer. Int J Radiat Oncol Biol Phys. 2010 Jun 01; 77(2):455-61.
    View in: PubMed
    Score: 0.090
  44. Postoperative external beam radiotherapy for differentiated thyroid cancer: outcomes and morbidity with conformal treatment. Int J Radiat Oncol Biol Phys. 2009 Jul 15; 74(4):1083-91.
    View in: PubMed
    Score: 0.086
  45. Cerebrovascular disease risk in older head and neck cancer patients after radiotherapy. J Clin Oncol. 2008 Nov 01; 26(31):5119-25.
    View in: PubMed
    Score: 0.084
  46. IMRT reirradiation of head and neck cancer-disease control and morbidity outcomes. Int J Radiat Oncol Biol Phys. 2009 Feb 01; 73(2):399-409.
    View in: PubMed
    Score: 0.083
  47. The M. D. Anderson symptom inventory-head and neck module, a patient-reported outcome instrument, accurately predicts the severity of radiation-induced mucositis. Int J Radiat Oncol Biol Phys. 2008 Dec 01; 72(5):1355-61.
    View in: PubMed
    Score: 0.083
  48. Comparison of 2D radiographic images and 3D cone beam computed tomography for positioning head-and-neck radiotherapy patients. Int J Radiat Oncol Biol Phys. 2008 Jul 01; 71(3):916-25.
    View in: PubMed
    Score: 0.082
  49. Measuring head and neck cancer symptom burden: the development and validation of the M. D. Anderson symptom inventory, head and neck module. Head Neck. 2007 Oct; 29(10):923-31.
    View in: PubMed
    Score: 0.079
  50. Disease-control rates following intensity-modulated radiation therapy for small primary oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2007 Feb 01; 67(2):438-44.
    View in: PubMed
    Score: 0.075
  51. Importance of patient examination to clinical quality assurance in head and neck radiation oncology. Head Neck. 2006 Nov; 28(11):967-73.
    View in: PubMed
    Score: 0.075
  52. Two-field versus three-field irradiation technique in the postoperative treatment of head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2006 Oct 01; 66(2):469-76.
    View in: PubMed
    Score: 0.073
  53. Impact of changes to the American Joint Committee on Cancer T classification on outcome prediction in patients with oropharyngeal cancer. Cancer. 2006 May 01; 106(9):1950-7.
    View in: PubMed
    Score: 0.072
  54. Target coverage for head and neck cancers treated with IMRT: review of clinical experiences. Semin Radiat Oncol. 2004 Apr; 14(2):103-9.
    View in: PubMed
    Score: 0.062
  55. MR-guided stereotactic radiation therapy for head and neck cancers. Clin Transl Radiat Oncol. 2024 May; 46:100760.
    View in: PubMed
    Score: 0.062
  56. Surrogate endpoints in clinical trials of p16-positive squamous cell carcinoma of the oropharynx: an individual patient data meta-analysis. Lancet Oncol. 2024 Mar; 25(3):366-375.
    View in: PubMed
    Score: 0.062
  57. Clinical acceptability of automatically generated lymph node levels and structures of deglutition and mastication for head and neck radiation therapy. Phys Imaging Radiat Oncol. 2024 Jan; 29:100540.
    View in: PubMed
    Score: 0.062
  58. New equations for matching a low neck field to oblique upper neck fields with collimator rotation in a 3-field monoisocentric setup for head-and-neck cancers. Med Dosim. 2004; 29(2):86-91.
    View in: PubMed
    Score: 0.061
  59. Management of nonsinonasal neuroendocrine carcinomas of the head and neck. Cancer. 2003 Dec 01; 98(11):2322-8.
    View in: PubMed
    Score: 0.061
  60. Patterns of failure for recurrent head and neck squamous cell carcinoma treated with salvage surgery and postoperative IMRT reirradiation. Clin Transl Radiat Oncol. 2024 Jan; 44:100700.
    View in: PubMed
    Score: 0.061
  61. Hypothyroidism following Radiotherapy for Head and Neck Cancer: A Systematic Review of the Literature and Opportunities to Improve the Therapeutic Ratio. Cancers (Basel). 2023 Aug 29; 15(17).
    View in: PubMed
    Score: 0.060
  62. Long-term outcomes of modern multidisciplinary management of sinonasal cancers: The M. D. Anderson experience. Head Neck. 2023 07; 45(7):1692-1703.
    View in: PubMed
    Score: 0.059
  63. Long-Term Update of NRG/RTOG 0522: A Randomized Phase 3 Trial of Concurrent Radiation and Cisplatin With or Without Cetuximab in Locoregionally Advanced Head and Neck Cancer. Int J Radiat Oncol Biol Phys. 2023 07 01; 116(3):533-543.
    View in: PubMed
    Score: 0.057
  64. Changes in Apparent Diffusion Coefficient (ADC) in Serial Weekly MRI during Radiotherapy in Patients with Head and Neck Cancer: Results from the PREDICT-HN Study. Curr Oncol. 2022 08 31; 29(9):6303-6313.
    View in: PubMed
    Score: 0.056
  65. Feasibility of Mobile and Sensor Technology for Remote Monitoring in Cancer Care and Prevention. AMIA Annu Symp Proc. 2021; 2021:979-988.
    View in: PubMed
    Score: 0.054
  66. The influence of radiation dose on taste impairment in a prospective observational study cohort of oropharyngeal cancer patients. Acta Oncol. 2022 Feb; 61(2):146-152.
    View in: PubMed
    Score: 0.054
  67. Proton Image-guided Radiation Assignment for Therapeutic Escalation via Selection of locally advanced head and neck cancer patients [PIRATES]: A Phase I safety and feasibility trial of MRI-guided adaptive particle radiotherapy. Clin Transl Radiat Oncol. 2022 Jan; 32:35-40.
    View in: PubMed
    Score: 0.053
  68. Factors associated with complex oral treatment device usage in patients with head and neck cancer. Clin Transl Radiat Oncol. 2021 Sep; 30:78-83.
    View in: PubMed
    Score: 0.052
  69. Stereotactic body ablative radiotherapy for reirradiation of small volume head and neck cancers is associated with prolonged survival: Large, single-institution, modern cohort study. Head Neck. 2021 11; 43(11):3331-3344.
    View in: PubMed
    Score: 0.052
  70. Proton Therapy for Head and Neck Cancer: A 12-Year, Single-Institution Experience. Int J Part Ther. 2021; 8(1):108-118.
    View in: PubMed
    Score: 0.051
  71. Patient-Reported Outcomes after Intensity-Modulated Proton Therapy for Oropharynx Cancer. Int J Part Ther. 2021; 8(1):213-222.
    View in: PubMed
    Score: 0.051
  72. Proton Beam Therapy for Head and Neck Carcinoma of Unknown Primary: Toxicity and Quality of Life. Int J Part Ther. 2021; 8(1):234-247.
    View in: PubMed
    Score: 0.051
  73. Proton Therapy for Major Salivary Gland Cancer: Clinical Outcomes. Int J Part Ther. 2021; 8(1):261-272.
    View in: PubMed
    Score: 0.051
  74. Work Outcomes after Intensity-Modulated Proton Therapy (IMPT) versus Intensity-Modulated Photon Therapy (IMRT) for Oropharyngeal Cancer. Int J Part Ther. 2021; 8(1):319-327.
    View in: PubMed
    Score: 0.051
  75. 18FDG positron emission tomography mining for metabolic imaging biomarkers of radiation-induced xerostomia in patients with oropharyngeal cancer. Clin Transl Radiat Oncol. 2021 Jul; 29:93-101.
    View in: PubMed
    Score: 0.051
  76. Proton Therapy for HPV-Associated Oropharyngeal Cancers of the Head and Neck: a De-Intensification Strategy. Curr Treat Options Oncol. 2021 06 04; 22(6):54.
    View in: PubMed
    Score: 0.051
  77. The impact of age on outcome in phase III NRG Oncology/RTOG trials of radiotherapy (XRT) +/- systemic therapy in locally advanced head and neck cancer. J Geriatr Oncol. 2021 07; 12(6):937-944.
    View in: PubMed
    Score: 0.051
  78. The impact of induction and/or concurrent chemoradiotherapy on acute and late patient-reported symptoms in oropharyngeal cancer: Application of a mixed-model analysis of a prospective observational cohort registry. Cancer. 2021 07 15; 127(14):2453-2464.
    View in: PubMed
    Score: 0.051
  79. Defining the dose-volume criteria for laryngeal sparing in locally advanced oropharyngeal cancer utilizing split-field IMRT, whole-field IMRT and VMAT. J Appl Clin Med Phys. 2021 Jan; 22(1):37-44.
    View in: PubMed
    Score: 0.049
  80. Development and validation of a contouring guideline for the taste bud bearing tongue mucosa. Radiother Oncol. 2021 04; 157:63-69.
    View in: PubMed
    Score: 0.049
  81. Longitudinal characterization of the tumoral microbiome during radiotherapy in HPV-associated oropharynx cancer. Clin Transl Radiat Oncol. 2021 Jan; 26:98-103.
    View in: PubMed
    Score: 0.049
  82. Tobacco exposure as a major modifier of oncologic outcomes in human papillomavirus (HPV) associated oropharyngeal squamous cell carcinoma. BMC Cancer. 2020 Sep 23; 20(1):912.
    View in: PubMed
    Score: 0.049
  83. A Dosimetric Comparison of Oral Cavity Sparing in the Unilateral Treatment of Early Stage Tonsil Cancer: IMRT, IMPT, and Tongue-Deviating Oral Stents. Adv Radiat Oncol. 2020 Nov-Dec; 5(6):1359-1363.
    View in: PubMed
    Score: 0.049
  84. Highly conformal reirradiation in patients with prior oropharyngeal radiation: Clinical efficacy and toxicity outcomes. Head Neck. 2020 11; 42(11):3326-3335.
    View in: PubMed
    Score: 0.048
  85. Outcomes and patterns of radiation associated brain image changes after proton therapy for head and neck skull base cancers. Radiother Oncol. 2020 10; 151:119-125.
    View in: PubMed
    Score: 0.048
  86. Patient-reported outcomes, physician-reported toxicities, and treatment outcomes in a modern cohort of patients with sinonasal cancer treated using proton beam therapy. Radiother Oncol. 2020 07; 148:258-266.
    View in: PubMed
    Score: 0.048
  87. Comparison of tumor delineation using dual energy computed tomography versus magnetic resonance imaging in head and neck cancer re-irradiation cases. Phys Imaging Radiat Oncol. 2020 Apr; 14:1-5.
    View in: PubMed
    Score: 0.047
  88. Prospective longitudinal patient-reported outcomes of swallowing following intensity modulated proton therapy for oropharyngeal cancer. Radiother Oncol. 2020 07; 148:133-139.
    View in: PubMed
    Score: 0.047
  89. A prospective parallel design study testing non-inferiority of customized oral stents made using 3D printing or manually fabricated methods. Oral Oncol. 2020 07; 106:104665.
    View in: PubMed
    Score: 0.047
  90. SABR for Skull Base Malignancies: A Systematic Analysis of Set-Up and Positioning Accuracy. Pract Radiat Oncol. 2020 Sep - Oct; 10(5):363-371.
    View in: PubMed
    Score: 0.047
  91. Prospective observational evaluation of radiation-induced late taste impairment kinetics in oropharyngeal cancer patients: Potential for improvement over time? Clin Transl Radiat Oncol. 2020 May; 22:98-105.
    View in: PubMed
    Score: 0.047
  92. Outcomes and toxicities following stereotactic ablative radiotherapy for pulmonary metastases in patients with primary head and neck cancer. Head Neck. 2020 08; 42(8):1939-1953.
    View in: PubMed
    Score: 0.047
  93. A prospective evaluation of health-related quality of life after skull base re-irradiation. Head Neck. 2020 03; 42(3):485-497.
    View in: PubMed
    Score: 0.046
  94. Surveillance imaging for patients with head and neck cancer treated with definitive radiotherapy: A partially observed Markov decision process model. Cancer. 2020 02 15; 126(4):749-756.
    View in: PubMed
    Score: 0.046
  95. Estimating PTV Margins in Head and Neck Stereotactic Ablative Radiation Therapy (SABR) Through Target Site Analysis of Positioning and Intrafractional Accuracy. Int J Radiat Oncol Biol Phys. 2020 01 01; 106(1):185-193.
    View in: PubMed
    Score: 0.046
  96. Creating customized oral stents for head and neck radiotherapy using 3D scanning and printing. Radiat Oncol. 2019 Aug 19; 14(1):148.
    View in: PubMed
    Score: 0.045
  97. Xerostomia-related quality of life for patients with oropharyngeal carcinoma treated with proton therapy. Radiother Oncol. 2020 01; 142:133-139.
    View in: PubMed
    Score: 0.045
  98. Patient Outcomes after Reirradiation of Small Skull Base Tumors using Stereotactic Body Radiotherapy, Intensity Modulated Radiotherapy, or Proton Therapy. J Neurol Surg B Skull Base. 2020 Dec; 81(6):638-644.
    View in: PubMed
    Score: 0.045
  99. Optimizing laryngeal sparing with intensity modulated radiotherapy or volumetric modulated arc therapy for unilateral tonsil cancer. Phys Imaging Radiat Oncol. 2019 Apr; 10:29-34.
    View in: PubMed
    Score: 0.044
  100. Minocycline for symptom reduction during radiation therapy for head and neck cancer: a randomized clinical trial. Support Care Cancer. 2020 Jan; 28(1):261-269.
    View in: PubMed
    Score: 0.044
  101. Prospective quantitative quality assurance and deformation estimation of MRI-CT image registration in simulation of head and neck radiotherapy patients. Clin Transl Radiat Oncol. 2019 Sep; 18:120-127.
    View in: PubMed
    Score: 0.044
  102. Radiographic retropharyngeal lymph node involvement in HPV-associated oropharyngeal carcinoma: Patterns of involvement and impact on patient outcomes. Cancer. 2019 05 01; 125(9):1536-1546.
    View in: PubMed
    Score: 0.043
  103. The Insurance Approval Process for Proton Radiation Therapy: A Significant Barrier to Patient Care. Int J Radiat Oncol Biol Phys. 2019 07 15; 104(4):724-733.
    View in: PubMed
    Score: 0.043
  104. Author Correction: Imaging and clinical data archive for head and neck squamous cell carcinoma patients treated with radiotherapy. Sci Data. 2018 11 27; 5(1):1.
    View in: PubMed
    Score: 0.043
  105. Intensity modulated proton therapy (IMPT) - The future of IMRT for head and neck cancer. Oral Oncol. 2019 01; 88:66-74.
    View in: PubMed
    Score: 0.043
  106. Predicting treatment Response based on Dual assessment of magnetic resonance Imaging kinetics and Circulating Tumor cells in patients with Head and Neck cancer (PREDICT-HN): matching 'liquid biopsy' and quantitative tumor modeling. BMC Cancer. 2018 Sep 19; 18(1):903.
    View in: PubMed
    Score: 0.042
  107. Imaging and clinical data archive for head and neck squamous cell carcinoma patients treated with radiotherapy. Sci Data. 2018 09 04; 5:180173.
    View in: PubMed
    Score: 0.042
  108. Magnetic Resonance-based Response Assessment and Dose Adaptation in Human Papilloma Virus Positive Tumors of the Oropharynx treated with Radiotherapy (MR-ADAPTOR): An R-IDEAL stage 2a-2b/Bayesian phase II trial. Clin Transl Radiat Oncol. 2018 Nov; 13:19-23.
    View in: PubMed
    Score: 0.042
  109. Age-adjusted comorbidity and survival in locally advanced laryngeal cancer. Head Neck. 2018 09; 40(9):2060-2069.
    View in: PubMed
    Score: 0.041
  110. Prospective in silico study of the feasibility and dosimetric advantages of MRI-guided dose adaptation for human papillomavirus positive oropharyngeal cancer patients compared with standard IMRT. Clin Transl Radiat Oncol. 2018 Jun; 11:11-18.
    View in: PubMed
    Score: 0.041
  111. Stereotactic radiosurgery for trigeminal pain secondary to recurrent malignant skull base tumors. J Neurosurg. 2018 04 27; 130(3):812-821.
    View in: PubMed
    Score: 0.041
  112. Comparing Intensity-Modulated Proton Therapy With Intensity-Modulated Photon Therapy for Oropharyngeal Cancer: The Journey From Clinical Trial Concept to Activation. Semin Radiat Oncol. 2018 04; 28(2):108-113.
    View in: PubMed
    Score: 0.041
  113. Patient reported dry mouth: Instrument comparison and model performance for correlation with quality of life in head and neck cancer survivors. Radiother Oncol. 2018 01; 126(1):75-80.
    View in: PubMed
    Score: 0.040
  114. Correction to: Long-term patient reported outcomes following radiation therapy for oropharyngeal cancer: cross-sectional assessment of a prospective symptom survey in patients =65?years old. Radiat Oncol. 2017 11 23; 12(1):186.
    View in: PubMed
    Score: 0.040
  115. Prognostic impact of leukocyte counts before and during radiotherapy for oropharyngeal cancer. Clin Transl Radiat Oncol. 2017 Dec; 7:28-35.
    View in: PubMed
    Score: 0.040
  116. Long-term patient reported outcomes following radiation therapy for oropharyngeal cancer: cross-sectional assessment of a prospective symptom survey in patients =65?years old. Radiat Oncol. 2017 Sep 09; 12(1):150.
    View in: PubMed
    Score: 0.040
  117. Cognitive function and patient-reported memory problems after radiotherapy for cancers at the skull base: A cross-sectional survivorship study using the Telephone Interview for Cognitive Status and the MD Anderson Symptom Inventory-Head and Neck Module. Head Neck. 2017 10; 39(10):2048-2056.
    View in: PubMed
    Score: 0.039
  118. Patterns-of-failure guided biological target volume definition for head and neck cancer patients: FDG-PET and dosimetric analysis of dose escalation candidate subregions. Radiother Oncol. 2017 08; 124(2):248-255.
    View in: PubMed
    Score: 0.039
  119. Clinical outcomes after local field conformal reirradiation of patients with retropharyngeal nodal metastasis. Head Neck. 2017 10; 39(10):2079-2087.
    View in: PubMed
    Score: 0.039
  120. Quantitative pretreatment CT volumetry: Association with oncologic outcomes in patients with T4a squamous carcinoma of the larynx. Head Neck. 2017 08; 39(8):1609-1620.
    View in: PubMed
    Score: 0.039
  121. Delayed lower cranial neuropathy after oropharyngeal intensity-modulated radiotherapy: A cohort analysis and literature review. Head Neck. 2017 08; 39(8):1516-1523.
    View in: PubMed
    Score: 0.039
  122. Radiation therapy dose is associated with improved survival for unresected anaplastic thyroid carcinoma: Outcomes from the National Cancer Data Base. Cancer. 2017 05 01; 123(9):1653-1661.
    View in: PubMed
    Score: 0.038
  123. CT-based volumetric tumor growth velocity: A novel imaging prognostic indicator in oropharyngeal cancer patients receiving radiotherapy. Oral Oncol. 2016 12; 63:16-22.
    View in: PubMed
    Score: 0.037
  124. Toward a model-based patient selection strategy for proton therapy: External validation of photon-derived normal tissue complication probability models in a head and neck proton therapy cohort. Radiother Oncol. 2016 12; 121(3):381-386.
    View in: PubMed
    Score: 0.037
  125. Quality of Life and Performance Status From a Substudy Conducted Within a Prospective Phase 3 Randomized Trial of Concurrent Accelerated Radiation Plus Cisplatin With or Without Cetuximab for Locally Advanced Head and Neck Carcinoma: NRG Oncology Radiation Therapy Oncology Group 0522. Int J Radiat Oncol Biol Phys. 2017 03 15; 97(4):687-699.
    View in: PubMed
    Score: 0.037
  126. Methodology for analysis and reporting patterns of failure in the Era of IMRT: head and neck cancer applications. Radiat Oncol. 2016 Jul 26; 11(1):95.
    View in: PubMed
    Score: 0.037
  127. Predicting two-year longitudinal MD Anderson Dysphagia Inventory outcomes after intensity modulated radiotherapy for locoregionally advanced oropharyngeal carcinoma. Laryngoscope. 2017 04; 127(4):842-848.
    View in: PubMed
    Score: 0.037
  128. Intensity-modulated proton beam therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for patients with oropharynx cancer - A case matched analysis. Radiother Oncol. 2016 07; 120(1):48-55.
    View in: PubMed
    Score: 0.036
  129. Long-Term, Prospective Performance of the MD?Anderson Dysphagia Inventory in "Low-Intermediate Risk" Oropharyngeal Carcinoma After Intensity Modulated Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017 03 15; 97(4):700-708.
    View in: PubMed
    Score: 0.036
  130. Improved setup and positioning accuracy using a three-point customized cushion/mask/bite-block immobilization system for stereotactic reirradiation of head and neck cancer. J Appl Clin Med Phys. 2016 05 08; 17(3):180-189.
    View in: PubMed
    Score: 0.036
  131. Dosimetric advantages of intensity-modulated proton therapy for oropharyngeal cancer compared with intensity-modulated radiation: A case-matched control analysis. Med Dosim. 2016; 41(3):189-94.
    View in: PubMed
    Score: 0.036
  132. Reirradiation of Head and Neck Cancers With Proton Therapy: Outcomes and Analyses. Int J Radiat Oncol Biol Phys. 2016 09 01; 96(1):30-41.
    View in: PubMed
    Score: 0.036
  133. Correlation Between the Severity of Cetuximab-Induced Skin Rash and Clinical Outcome for Head and Neck Cancer Patients: The?RTOG Experience. Int J Radiat Oncol Biol Phys. 2016 08 01; 95(5):1346-1354.
    View in: PubMed
    Score: 0.036
  134. Postoperative Intensity-Modulated Proton Therapy for Head and Neck Adenoid Cystic Carcinoma. Int J Part Ther. 2016 Mar; 2(4):533-543.
    View in: PubMed
    Score: 0.036
  135. Reirradiation of Head and Neck Cancers With Intensity Modulated Radiation Therapy: Outcomes and Analyses. Int J Radiat Oncol Biol Phys. 2016 07 15; 95(4):1117-31.
    View in: PubMed
    Score: 0.036
  136. Outcomes for hypopharyngeal carcinoma treated with organ-preservation therapy. Head Neck. 2016 04; 38 Suppl 1:E2091-9.
    View in: PubMed
    Score: 0.036
  137. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes. Int J Radiat Oncol Biol Phys. 2016 07 15; 95(4):1107-14.
    View in: PubMed
    Score: 0.035
  138. Clinical Outcomes and Patterns of Disease Recurrence After Intensity Modulated Proton Therapy for Oropharyngeal Squamous Carcinoma. Int J Radiat Oncol Biol Phys. 2016 May 01; 95(1):360-367.
    View in: PubMed
    Score: 0.035
  139. Magnetic resonance imaging of swallowing-related structures in nasopharyngeal carcinoma patients receiving IMRT: Longitudinal dose-response characterization of quantitative signal kinetics. Radiother Oncol. 2016 Feb; 118(2):315-22.
    View in: PubMed
    Score: 0.035
  140. Intensity-modulated proton therapy for nasopharyngeal carcinoma: Decreased radiation dose to normal structures and encouraging clinical outcomes. Head Neck. 2016 04; 38 Suppl 1:E1886-95.
    View in: PubMed
    Score: 0.035
  141. Prognostic value of p16 expression in Epstein-Barr virus-positive nasopharyngeal carcinomas. Head Neck. 2016 04; 38 Suppl 1:E1459-66.
    View in: PubMed
    Score: 0.035
  142. Definitive proton radiation therapy and concurrent cisplatin for unresectable head and neck adenoid cystic carcinoma: A series of 9 cases and a critical review of the literature. Head Neck. 2016 04; 38 Suppl 1:E1472-80.
    View in: PubMed
    Score: 0.035
  143. The role of elective nodal irradiation for esthesioneuroblastoma patients with clinically negative neck. Pract Radiat Oncol. 2016 Jul-Aug; 6(4):241-247.
    View in: PubMed
    Score: 0.035
  144. Prognostic value of pretherapy platelet elevation in oropharyngeal cancer patients treated with chemoradiation. Int J Cancer. 2016 Mar 01; 138(5):1290-7.
    View in: PubMed
    Score: 0.035
  145. Intravoxel incoherent motion imaging kinetics during chemoradiotherapy for human papillomavirus-associated squamous cell carcinoma of the oropharynx: preliminary results from a prospective pilot study. NMR Biomed. 2015 Dec; 28(12):1645-54.
    View in: PubMed
    Score: 0.035
  146. A Multidisciplinary Orbit-Sparing Treatment Approach That Includes Proton Therapy for Epithelial Tumors of the Orbit and Ocular Adnexa. Int J Radiat Oncol Biol Phys. 2016 May 01; 95(1):344-352.
    View in: PubMed
    Score: 0.034
  147. Disease control and toxicity outcomes for T4 carcinoma of the nasopharynx treated with intensity-modulated radiotherapy. Head Neck. 2016 04; 38 Suppl 1:E925-33.
    View in: PubMed
    Score: 0.034
  148. Merkel cell carcinoma of the head and neck: Favorable outcomes with radiotherapy. Head Neck. 2016 04; 38 Suppl 1:E452-8.
    View in: PubMed
    Score: 0.034
  149. Orbital carcinomas treated with adjuvant intensity-modulated radiation therapy. Head Neck. 2016 04; 38 Suppl 1:E580-7.
    View in: PubMed
    Score: 0.034
  150. Reply to B. O'Sullivan et Al. J Clin Oncol. 2015 May 20; 33(15):1708-9.
    View in: PubMed
    Score: 0.033
  151. Metabolic tumor volume as a prognostic imaging-based biomarker for head-and-neck cancer: pilot results from Radiation Therapy Oncology Group protocol 0522. Int J Radiat Oncol Biol Phys. 2015 Mar 15; 91(4):721-9.
    View in: PubMed
    Score: 0.033
  152. Characteristics and kinetics of cervical lymph node regression after radiation therapy for human papillomavirus-associated oropharyngeal carcinoma: quantitative image analysis of post-radiotherapy response. Oral Oncol. 2015 Feb; 51(2):195-201.
    View in: PubMed
    Score: 0.033
  153. Quality assurance assessment of diagnostic and radiation therapy-simulation CT image registration for head and neck radiation therapy: anatomic region of interest-based comparison of rigid and deformable algorithms. Radiology. 2015 Mar; 274(3):752-63.
    View in: PubMed
    Score: 0.032
  154. Randomized phase III trial of concurrent accelerated radiation plus cisplatin with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol. 2014 Sep 20; 32(27):2940-50.
    View in: PubMed
    Score: 0.032
  155. Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer. Radiother Oncol. 2014 Sep; 112(3):321-5.
    View in: PubMed
    Score: 0.032
  156. Nomogram for predicting symptom severity during radiation therapy for head and neck cancer. Otolaryngol Head Neck Surg. 2014 Oct; 151(4):619-26.
    View in: PubMed
    Score: 0.032
  157. Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J Clin Oncol. 2014 Oct 20; 32(30):3365-73.
    View in: PubMed
    Score: 0.032
  158. Multifield optimization intensity modulated proton therapy for head and neck tumors: a translation to practice. Int J Radiat Oncol Biol Phys. 2014 Jul 15; 89(4):846-53.
    View in: PubMed
    Score: 0.031
  159. Beam path toxicity in candidate organs-at-risk: assessment of radiation emetogenesis for patients receiving head and neck intensity modulated radiotherapy. Radiother Oncol. 2014 May; 111(2):281-8.
    View in: PubMed
    Score: 0.031
  160. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: quality assurance implications for target volume and organs-at-risk margination using daily CT on- rails imaging. J Appl Clin Med Phys. 2014 Jan 08; 16(1):5108.
    View in: PubMed
    Score: 0.031
  161. Clinical characteristics of patients with multiple potentially human papillomavirus-related malignancies. Head Neck. 2014 Jun; 36(6):819-25.
    View in: PubMed
    Score: 0.030
  162. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: a treatment planning comparison. Med Dosim. 2013; 38(4):390-4.
    View in: PubMed
    Score: 0.030
  163. Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy. Pract Radiat Oncol. 2014 Jan-Feb; 4(1):e31-7.
    View in: PubMed
    Score: 0.029
  164. Adaptive radiotherapy for head and neck cancer--dosimetric results from a prospective clinical trial. Radiother Oncol. 2013 Jan; 106(1):80-4.
    View in: PubMed
    Score: 0.029
  165. Prospective assessment of an atlas-based intervention combined with real-time software feedback in contouring lymph node levels and organs-at-risk in the head and neck: Quantitative assessment of conformance to expert delineation. Pract Radiat Oncol. 2013 Jul-Sep; 3(3):186-193.
    View in: PubMed
    Score: 0.029
  166. Sonographic examination of the neck after definitive radiotherapy for node-positive oropharyngeal cancer. AJNR Am J Neuroradiol. 2011 Sep; 32(8):1532-8.
    View in: PubMed
    Score: 0.026
  167. Outcomes of malignant tumors of the lacrimal apparatus: the University of Texas MD Anderson Cancer Center experience. Cancer. 2011 Jun 15; 117(12):2801-10.
    View in: PubMed
    Score: 0.025
  168. Anaplastic thyroid cancer: Clinical outcomes with conformal radiotherapy. Head Neck. 2010 Jul; 32(7):829-36.
    View in: PubMed
    Score: 0.024
  169. Candidate dosimetric predictors of long-term swallowing dysfunction after oropharyngeal intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010 Dec 01; 78(5):1356-65.
    View in: PubMed
    Score: 0.024
  170. Prospective imaging assessment of mortality risk after head-and-neck radiotherapy. Int J Radiat Oncol Biol Phys. 2010 Nov 01; 78(3):667-74.
    View in: PubMed
    Score: 0.023
  171. Hypothyroidism in older patients with head and neck cancer after treatment with radiation: a population-based study. Head Neck. 2009 Aug; 31(8):1031-8.
    View in: PubMed
    Score: 0.023
  172. Prospective risk-adjusted [18F]Fluorodeoxyglucose positron emission tomography and computed tomography assessment of radiation response in head and neck cancer. J Clin Oncol. 2009 May 20; 27(15):2509-15.
    View in: PubMed
    Score: 0.022
  173. Postoperative adjuvant external-beam radiation therapy for cancers of the eyelid and conjunctiva. Ophthalmic Plast Reconstr Surg. 2008 Nov-Dec; 24(6):444-9.
    View in: PubMed
    Score: 0.021
  174. Postoperative radiotherapy for advanced medullary thyroid cancer--local disease control in the modern era. Head Neck. 2008 Jul; 30(7):883-8.
    View in: PubMed
    Score: 0.021
  175. Outcomes after radiotherapy for squamous cell carcinoma of the eyelid. Cancer. 2008 Jan 01; 112(1):111-8.
    View in: PubMed
    Score: 0.020
  176. Parotid gland dose in intensity-modulated radiotherapy for head and neck cancer: is what you plan what you get? Int J Radiat Oncol Biol Phys. 2007 Nov 15; 69(4):1290-6.
    View in: PubMed
    Score: 0.020
  177. Postoperative radiotherapy for maxillary sinus cancer: long-term outcomes and toxicities of treatment. Int J Radiat Oncol Biol Phys. 2007 Jul 01; 68(3):719-30.
    View in: PubMed
    Score: 0.020
  178. The effect of dental artifacts, contrast media, and experience on interobserver contouring variations in head and neck anatomy. Am J Clin Oncol. 2007 Apr; 30(2):191-8.
    View in: PubMed
    Score: 0.019
  179. Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2006 Apr 01; 64(5):1559-69.
    View in: PubMed
    Score: 0.018
  180. Determining optimal clinical target volume margins in head-and-neck cancer based on microscopic extracapsular extension of metastatic neck nodes. Int J Radiat Oncol Biol Phys. 2006 Mar 01; 64(3):678-83.
    View in: PubMed
    Score: 0.017
  181. Intensity-modulated radiotherapy: is xerostomia still prevalent? Curr Oncol Rep. 2005 Mar; 7(2):131-6.
    View in: PubMed
    Score: 0.017
  182. Parathyroid carcinoma: a 22-year experience. Head Neck. 2004 Aug; 26(8):716-26.
    View in: PubMed
    Score: 0.016
  183. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004 Jul 15; 59(4):960-70.
    View in: PubMed
    Score: 0.016
  184. Radiation therapy for early-stage carcinoma of the oropharynx. Int J Radiat Oncol Biol Phys. 2004 Jul 01; 59(3):743-51.
    View in: PubMed
    Score: 0.016
  185. A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy. Int J Radiat Oncol Biol Phys. 2004 Mar 01; 58(3):674-81.
    View in: PubMed
    Score: 0.015
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.