Connection

Co-Authors

This is a "connection" page, showing publications co-authored by ADAM S GARDEN and GARY BRANDON GUNN.
Connection Strength

9.957
  1. Neurologic sequelae following radiation with and without chemotherapy for oropharyngeal cancer: Patient reported outcomes study. Head Neck. 2020 08; 42(8):2137-2144.
    View in: PubMed
    Score: 0.723
  2. In Regard to Kjems et?al. Int J Radiat Oncol Biol Phys. 2016 09 01; 96(1):240.
    View in: PubMed
    Score: 0.565
  3. The impact of radiographic retropharyngeal adenopathy in oropharyngeal cancer. Cancer. 2013 Sep 01; 119(17):3162-9.
    View in: PubMed
    Score: 0.451
  4. Patterns of loco-regional progression and patient outcomes after definitive-dose radiation therapy for anaplastic thyroid cancer. Radiother Oncol. 2024 Nov 01; 202:110602.
    View in: PubMed
    Score: 0.249
  5. Proton Therapy for Head and Neck Cancer: A 12-Year, Single-Institution Experience. Int J Part Ther. 2021; 8(1):108-118.
    View in: PubMed
    Score: 0.197
  6. Conditional survival among patients with oropharyngeal cancer treated with radiation therapy and alive without recurrence 5 years after diagnosis. Cancer. 2021 04 15; 127(8):1228-1237.
    View in: PubMed
    Score: 0.190
  7. Prognostic significance of pre-treatment neutrophil-to-lymphocyte ratio (NLR) in patients with oropharyngeal cancer treated with radiotherapy. Br J Cancer. 2021 02; 124(3):628-633.
    View in: PubMed
    Score: 0.188
  8. A Dosimetric Comparison of Oral Cavity Sparing in the Unilateral Treatment of Early Stage Tonsil Cancer: IMRT, IMPT, and Tongue-Deviating Oral Stents. Adv Radiat Oncol. 2020 Nov-Dec; 5(6):1359-1363.
    View in: PubMed
    Score: 0.186
  9. Patterns of Failure After Intensity Modulated Radiation Therapy in Head and Neck Squamous Cell Carcinoma of Unknown Primary: Implication of Elective Nodal and Mucosal Dose Coverage. Adv Radiat Oncol. 2020 Sep-Oct; 5(5):929-935.
    View in: PubMed
    Score: 0.183
  10. Lymphopenia during radiotherapy in patients with oropharyngeal cancer. Radiother Oncol. 2020 04; 145:95-100.
    View in: PubMed
    Score: 0.178
  11. Minocycline for symptom reduction during radiation therapy for head and neck cancer: a randomized clinical trial. Support Care Cancer. 2020 Jan; 28(1):261-269.
    View in: PubMed
    Score: 0.170
  12. Radiographic retropharyngeal lymph node involvement in HPV-associated oropharyngeal carcinoma: Patterns of involvement and impact on patient outcomes. Cancer. 2019 05 01; 125(9):1536-1546.
    View in: PubMed
    Score: 0.166
  13. The Insurance Approval Process for Proton Radiation Therapy: A Significant Barrier to Patient Care. Int J Radiat Oncol Biol Phys. 2019 07 15; 104(4):724-733.
    View in: PubMed
    Score: 0.165
  14. Significance of Negative Posttreatment 18-FDG PET/CT Imaging in Patients With p16/HPV-Positive Oropharyngeal Cancer. Int J Radiat Oncol Biol Phys. 2018 11 15; 102(4):1029-1035.
    View in: PubMed
    Score: 0.160
  15. Outcomes of patients diagnosed with carcinoma metastatic to the neck from an unknown primary source and treated with intensity-modulated radiation therapy. Cancer. 2018 04 01; 124(7):1415-1427.
    View in: PubMed
    Score: 0.155
  16. Patient reported dry mouth: Instrument comparison and model performance for correlation with quality of life in head and neck cancer survivors. Radiother Oncol. 2018 01; 126(1):75-80.
    View in: PubMed
    Score: 0.154
  17. Long-term patient reported outcomes following radiation therapy for oropharyngeal cancer: cross-sectional assessment of a prospective symptom survey in patients =65?years old. Radiat Oncol. 2017 Sep 09; 12(1):150.
    View in: PubMed
    Score: 0.152
  18. Patterns of locoregional failure following post-operative intensity-modulated radiotherapy to oral cavity cancer: quantitative spatial and dosimetric analysis using a deformable image registration workflow. Radiat Oncol. 2017 Aug 15; 12(1):129.
    View in: PubMed
    Score: 0.151
  19. Outcomes of oral cavity cancer patients treated with surgery followed by postoperative intensity modulated radiation therapy. Oral Oncol. 2017 09; 72:90-97.
    View in: PubMed
    Score: 0.150
  20. Radiation therapy dose is associated with improved survival for unresected anaplastic thyroid carcinoma: Outcomes from the National Cancer Data Base. Cancer. 2017 05 01; 123(9):1653-1661.
    View in: PubMed
    Score: 0.144
  21. Recurrent oral cavity cancer: Patterns of failure after salvage multimodality therapy. Head Neck. 2017 04; 39(4):633-638.
    View in: PubMed
    Score: 0.144
  22. Reply to radiotherapy for human papillomavirus-positive oropharyngeal cancers in the National Cancer Data Base. Cancer. 2016 11 15; 122(21):3411-3412.
    View in: PubMed
    Score: 0.140
  23. Radiation therapy (with or without neck surgery) for phenotypic human papillomavirus-associated oropharyngeal cancer. Cancer. 2016 06 01; 122(11):1702-7.
    View in: PubMed
    Score: 0.137
  24. Clinical Outcomes and Patterns of Disease Recurrence After Intensity Modulated Proton Therapy for Oropharyngeal Squamous Carcinoma. Int J Radiat Oncol Biol Phys. 2016 May 01; 95(1):360-367.
    View in: PubMed
    Score: 0.136
  25. Comparison of systemic therapies used concurrently with radiation for the treatment of human papillomavirus-associated oropharyngeal cancer. Head Neck. 2016 04; 38 Suppl 1:E1554-61.
    View in: PubMed
    Score: 0.134
  26. Favorable patient reported outcomes following IMRT for early carcinomas of the tonsillar fossa: Results from a symptom assessment study. Radiother Oncol. 2015 Oct; 117(1):132-8.
    View in: PubMed
    Score: 0.132
  27. Characteristics and kinetics of cervical lymph node regression after radiation therapy for human papillomavirus-associated oropharyngeal carcinoma: quantitative image analysis of post-radiotherapy response. Oral Oncol. 2015 Feb; 51(2):195-201.
    View in: PubMed
    Score: 0.125
  28. Nomogram for predicting symptom severity during radiation therapy for head and neck cancer. Otolaryngol Head Neck Surg. 2014 Oct; 151(4):619-26.
    View in: PubMed
    Score: 0.122
  29. Management of the lymph node-positive neck in the patient with human papillomavirus-associated oropharyngeal cancer. Cancer. 2014 Oct 01; 120(19):3082-8.
    View in: PubMed
    Score: 0.121
  30. Patterns of symptom burden during radiotherapy or concurrent chemoradiotherapy for head and neck cancer: a prospective analysis using the University of Texas MD Anderson Cancer Center Symptom Inventory-Head and Neck Module. Cancer. 2014 Jul 01; 120(13):1975-84.
    View in: PubMed
    Score: 0.120
  31. Outcomes and patterns of care of patients with locally advanced oropharyngeal carcinoma treated in the early 21st century. Radiat Oncol. 2013 Jan 29; 8:21.
    View in: PubMed
    Score: 0.110
  32. Patterns of disease recurrence following treatment of oropharyngeal cancer with intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2013 Mar 15; 85(4):941-7.
    View in: PubMed
    Score: 0.107
  33. International Multi-Specialty Expert Physician Preoperative Identification of Extranodal Extension n Oropharyngeal Cancer Patients using Computed Tomography: Prospective Blinded Human Inter-Observer Performance Evaluation. medRxiv. 2024 Jun 08.
    View in: PubMed
    Score: 0.060
  34. Detection of Alteration in Carotid Artery Volumetry Using Standard-of-care Computed Tomography Surveillance Scans Following Unilateral Radiation Therapy for Early-stage Tonsillar Squamous Cell Carcinoma Survivors: A Cross-Sectional Internally-Matched Carotid Isodose Analysis. medRxiv. 2024 May 16.
    View in: PubMed
    Score: 0.060
  35. Long-term outcomes of modern multidisciplinary management of sinonasal cancers: The M. D. Anderson experience. Head Neck. 2023 07; 45(7):1692-1703.
    View in: PubMed
    Score: 0.056
  36. Changes in Apparent Diffusion Coefficient (ADC) in Serial Weekly MRI during Radiotherapy in Patients with Head and Neck Cancer: Results from the PREDICT-HN Study. Curr Oncol. 2022 08 31; 29(9):6303-6313.
    View in: PubMed
    Score: 0.053
  37. Association of hearing loss and tinnitus symptoms with health-related quality of life among long-term oropharyngeal cancer survivors. Cancer Med. 2023 01; 12(1):569-583.
    View in: PubMed
    Score: 0.053
  38. Genetic susceptibility to patient-reported xerostomia among long-term oropharyngeal cancer survivors. Sci Rep. 2022 04 22; 12(1):6662.
    View in: PubMed
    Score: 0.052
  39. Risk factors associated with patient-reported fatigue among long-term oropharyngeal carcinoma survivors. Head Neck. 2022 04; 44(4):952-963.
    View in: PubMed
    Score: 0.051
  40. The influence of radiation dose on taste impairment in a prospective observational study cohort of oropharyngeal cancer patients. Acta Oncol. 2022 Feb; 61(2):146-152.
    View in: PubMed
    Score: 0.051
  41. Determinants of patient-reported xerostomia among long-term oropharyngeal cancer survivors. Cancer. 2021 12 01; 127(23):4470-4480.
    View in: PubMed
    Score: 0.050
  42. Stereotactic body ablative radiotherapy for reirradiation of small volume head and neck cancers is associated with prolonged survival: Large, single-institution, modern cohort study. Head Neck. 2021 11; 43(11):3331-3344.
    View in: PubMed
    Score: 0.049
  43. Association of Risk Factors With Patient-Reported Voice and Speech Symptoms Among Long-term Survivors of Oropharyngeal Cancer. JAMA Otolaryngol Head Neck Surg. 2021 07 01; 147(7):615-623.
    View in: PubMed
    Score: 0.049
  44. Proton Beam Therapy for Head and Neck Carcinoma of Unknown Primary: Toxicity and Quality of Life. Int J Part Ther. 2021; 8(1):234-247.
    View in: PubMed
    Score: 0.049
  45. Proton Therapy for Major Salivary Gland Cancer: Clinical Outcomes. Int J Part Ther. 2021; 8(1):261-272.
    View in: PubMed
    Score: 0.049
  46. Work Outcomes after Intensity-Modulated Proton Therapy (IMPT) versus Intensity-Modulated Photon Therapy (IMRT) for Oropharyngeal Cancer. Int J Part Ther. 2021; 8(1):319-327.
    View in: PubMed
    Score: 0.049
  47. Activity-Based Costing of Intensity-Modulated Proton versus Photon Therapy for Oropharyngeal Cancer. Int J Part Ther. 2021; 8(1):374-382.
    View in: PubMed
    Score: 0.049
  48. Proton Therapy for HPV-Associated Oropharyngeal Cancers of the Head and Neck: a De-Intensification Strategy. Curr Treat Options Oncol. 2021 06 04; 22(6):54.
    View in: PubMed
    Score: 0.049
  49. Intensity-modulated proton therapy for oropharyngeal cancer reduces rates of late xerostomia. Radiother Oncol. 2021 07; 160:32-39.
    View in: PubMed
    Score: 0.049
  50. Bioelectrical impedance analysis as a quantitative measure of sarcopenia in head and neck cancer patients treated with radiotherapy. Radiother Oncol. 2021 06; 159:21-27.
    View in: PubMed
    Score: 0.048
  51. Defining the dose-volume criteria for laryngeal sparing in locally advanced oropharyngeal cancer utilizing split-field IMRT, whole-field IMRT and VMAT. J Appl Clin Med Phys. 2021 Jan; 22(1):37-44.
    View in: PubMed
    Score: 0.047
  52. Development and validation of a contouring guideline for the taste bud bearing tongue mucosa. Radiother Oncol. 2021 04; 157:63-69.
    View in: PubMed
    Score: 0.047
  53. Tobacco exposure as a major modifier of oncologic outcomes in human papillomavirus (HPV) associated oropharyngeal squamous cell carcinoma. BMC Cancer. 2020 Sep 23; 20(1):912.
    View in: PubMed
    Score: 0.047
  54. Highly conformal reirradiation in patients with prior oropharyngeal radiation: Clinical efficacy and toxicity outcomes. Head Neck. 2020 11; 42(11):3326-3335.
    View in: PubMed
    Score: 0.046
  55. The impact of tongue-deviating and tongue-depressing oral stents on long-term radiation-associated symptoms in oropharyngeal cancer survivors. Clin Transl Radiat Oncol. 2020 Sep; 24:71-78.
    View in: PubMed
    Score: 0.046
  56. Outcomes after radiation therapy for T2N0/stage II glottic squamous cell carcinoma. Head Neck. 2020 10; 42(10):2791-2800.
    View in: PubMed
    Score: 0.046
  57. A prospective parallel design study testing non-inferiority of customized oral stents made using 3D printing or manually fabricated methods. Oral Oncol. 2020 07; 106:104665.
    View in: PubMed
    Score: 0.045
  58. SABR for Skull Base Malignancies: A Systematic Analysis of Set-Up and Positioning Accuracy. Pract Radiat Oncol. 2020 Sep - Oct; 10(5):363-371.
    View in: PubMed
    Score: 0.045
  59. A prospective evaluation of health-related quality of life after skull base re-irradiation. Head Neck. 2020 03; 42(3):485-497.
    View in: PubMed
    Score: 0.044
  60. Surveillance imaging for patients with head and neck cancer treated with definitive radiotherapy: A partially observed Markov decision process model. Cancer. 2020 02 15; 126(4):749-756.
    View in: PubMed
    Score: 0.044
  61. Dysphagia After Primary Transoral Robotic Surgery With Neck Dissection vs Nonsurgical Therapy in Patients With Low- to Intermediate-Risk Oropharyngeal Cancer. JAMA Otolaryngol Head Neck Surg. 2019 Nov 01; 145(11):1053-1063.
    View in: PubMed
    Score: 0.044
  62. Estimating PTV Margins in Head and Neck Stereotactic Ablative Radiation Therapy (SABR) Through Target Site Analysis of Positioning and Intrafractional Accuracy. Int J Radiat Oncol Biol Phys. 2020 01 01; 106(1):185-193.
    View in: PubMed
    Score: 0.044
  63. Risk of second primary malignancies in head and neck cancer patients treated with definitive radiotherapy. NPJ Precis Oncol. 2019; 3:22.
    View in: PubMed
    Score: 0.044
  64. Creating customized oral stents for head and neck radiotherapy using 3D scanning and printing. Radiat Oncol. 2019 Aug 19; 14(1):148.
    View in: PubMed
    Score: 0.043
  65. Xerostomia-related quality of life for patients with oropharyngeal carcinoma treated with proton therapy. Radiother Oncol. 2020 01; 142:133-139.
    View in: PubMed
    Score: 0.043
  66. Patient Outcomes after Reirradiation of Small Skull Base Tumors using Stereotactic Body Radiotherapy, Intensity Modulated Radiotherapy, or Proton Therapy. J Neurol Surg B Skull Base. 2020 Dec; 81(6):638-644.
    View in: PubMed
    Score: 0.043
  67. The role of salvage surgery with interstitial brachytherapy for the Management of Regionally Recurrent Head and Neck Cancers. Cancers Head Neck. 2019; 4:4.
    View in: PubMed
    Score: 0.043
  68. Optimizing laryngeal sparing with intensity modulated radiotherapy or volumetric modulated arc therapy for unilateral tonsil cancer. Phys Imaging Radiat Oncol. 2019 Apr; 10:29-34.
    View in: PubMed
    Score: 0.042
  69. Prospective quantitative quality assurance and deformation estimation of MRI-CT image registration in simulation of head and neck radiotherapy patients. Clin Transl Radiat Oncol. 2019 Sep; 18:120-127.
    View in: PubMed
    Score: 0.042
  70. Usefulness of surveillance imaging in patients with head and neck cancer who are treated with definitive radiotherapy. Cancer. 2019 06 01; 125(11):1823-1829.
    View in: PubMed
    Score: 0.042
  71. Outcomes of carotid-sparing IMRT for T1 glottic cancer: Comparison with conventional radiation. Laryngoscope. 2020 01; 130(1):146-153.
    View in: PubMed
    Score: 0.042
  72. Author Correction: Imaging and clinical data archive for head and neck squamous cell carcinoma patients treated with radiotherapy. Sci Data. 2018 11 27; 5(1):1.
    View in: PubMed
    Score: 0.041
  73. Intensity modulated proton therapy (IMPT) - The future of IMRT for head and neck cancer. Oral Oncol. 2019 01; 88:66-74.
    View in: PubMed
    Score: 0.041
  74. Predicting treatment Response based on Dual assessment of magnetic resonance Imaging kinetics and Circulating Tumor cells in patients with Head and Neck cancer (PREDICT-HN): matching 'liquid biopsy' and quantitative tumor modeling. BMC Cancer. 2018 Sep 19; 18(1):903.
    View in: PubMed
    Score: 0.041
  75. Imaging and clinical data archive for head and neck squamous cell carcinoma patients treated with radiotherapy. Sci Data. 2018 09 04; 5:180173.
    View in: PubMed
    Score: 0.041
  76. Magnetic Resonance-based Response Assessment and Dose Adaptation in Human Papilloma Virus Positive Tumors of the Oropharynx treated with Radiotherapy (MR-ADAPTOR): An R-IDEAL stage 2a-2b/Bayesian phase II trial. Clin Transl Radiat Oncol. 2018 Nov; 13:19-23.
    View in: PubMed
    Score: 0.040
  77. Decreased gastrostomy tube incidence and weight loss after transoral robotic surgery for low- to intermediate-risk oropharyngeal squamous cell carcinoma. Head Neck. 2018 11; 40(11):2507-2513.
    View in: PubMed
    Score: 0.040
  78. Neoadjuvant BRAF- and Immune-Directed Therapy for Anaplastic Thyroid Carcinoma. Thyroid. 2018 07; 28(7):945-951.
    View in: PubMed
    Score: 0.040
  79. Age-adjusted comorbidity and survival in locally advanced laryngeal cancer. Head Neck. 2018 09; 40(9):2060-2069.
    View in: PubMed
    Score: 0.040
  80. Prospective in silico study of the feasibility and dosimetric advantages of MRI-guided dose adaptation for human papillomavirus positive oropharyngeal cancer patients compared with standard IMRT. Clin Transl Radiat Oncol. 2018 Jun; 11:11-18.
    View in: PubMed
    Score: 0.040
  81. Stereotactic radiosurgery for trigeminal pain secondary to recurrent malignant skull base tumors. J Neurosurg. 2019 03 01; 130(3):812-821.
    View in: PubMed
    Score: 0.040
  82. Comparing Intensity-Modulated Proton Therapy With Intensity-Modulated Photon Therapy for Oropharyngeal Cancer: The Journey From Clinical Trial Concept to Activation. Semin Radiat Oncol. 2018 04; 28(2):108-113.
    View in: PubMed
    Score: 0.039
  83. Three-dimensional imaging assessment of anatomic invasion and volumetric considerations for chemo/radiotherapy-based laryngeal preservation in T3 larynx cancer. Oral Oncol. 2018 04; 79:1-8.
    View in: PubMed
    Score: 0.039
  84. Design and fabrication of a 3D-printed oral stent for head and neck radiotherapy from routine diagnostic imaging. 3D Print Med. 2017; 3(1):12.
    View in: PubMed
    Score: 0.038
  85. Prognostic impact of leukocyte counts before and during radiotherapy for oropharyngeal cancer. Clin Transl Radiat Oncol. 2017 Dec; 7:28-35.
    View in: PubMed
    Score: 0.038
  86. Cognitive function and patient-reported memory problems after radiotherapy for cancers at the skull base: A cross-sectional survivorship study using the Telephone Interview for Cognitive Status and the MD Anderson Symptom Inventory-Head and Neck Module. Head Neck. 2017 10; 39(10):2048-2056.
    View in: PubMed
    Score: 0.038
  87. Clinical outcomes after local field conformal reirradiation of patients with retropharyngeal nodal metastasis. Head Neck. 2017 10; 39(10):2079-2087.
    View in: PubMed
    Score: 0.038
  88. Quantitative pretreatment CT volumetry: Association with oncologic outcomes in patients with T4a squamous carcinoma of the larynx. Head Neck. 2017 08; 39(8):1609-1620.
    View in: PubMed
    Score: 0.037
  89. Delayed lower cranial neuropathy after oropharyngeal intensity-modulated radiotherapy: A cohort analysis and literature review. Head Neck. 2017 08; 39(8):1516-1523.
    View in: PubMed
    Score: 0.037
  90. Prospective Qualitative and Quantitative Analysis of Real-Time Peer Review Quality Assurance Rounds Incorporating Direct Physical Examination for Head and Neck Cancer Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017 07 01; 98(3):532-540.
    View in: PubMed
    Score: 0.036
  91. CT-based volumetric tumor growth velocity: A novel imaging prognostic indicator in oropharyngeal cancer patients receiving radiotherapy. Oral Oncol. 2016 12; 63:16-22.
    View in: PubMed
    Score: 0.036
  92. Toward a model-based patient selection strategy for proton therapy: External validation of photon-derived normal tissue complication probability models in a head and neck proton therapy cohort. Radiother Oncol. 2016 12; 121(3):381-386.
    View in: PubMed
    Score: 0.035
  93. Quantitative body mass characterization before and after head and neck cancer radiotherapy: A challenge of height-weight formulae using computed tomography measurement. Oral Oncol. 2016 10; 61:62-9.
    View in: PubMed
    Score: 0.035
  94. Long-term outcomes after multidisciplinary management of T3 laryngeal squamous cell carcinomas: Improved functional outcomes and survival with modern therapeutic approaches. Head Neck. 2016 12; 38(12):1739-1751.
    View in: PubMed
    Score: 0.035
  95. Methodology for analysis and reporting patterns of failure in the Era of IMRT: head and neck cancer applications. Radiat Oncol. 2016 Jul 26; 11(1):95.
    View in: PubMed
    Score: 0.035
  96. Predicting two-year longitudinal MD Anderson Dysphagia Inventory outcomes after intensity modulated radiotherapy for locoregionally advanced oropharyngeal carcinoma. Laryngoscope. 2017 04; 127(4):842-848.
    View in: PubMed
    Score: 0.035
  97. Intensity-modulated proton beam therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for patients with oropharynx cancer - A case matched analysis. Radiother Oncol. 2016 07; 120(1):48-55.
    View in: PubMed
    Score: 0.035
  98. Long-Term, Prospective Performance of the MD?Anderson Dysphagia Inventory in "Low-Intermediate Risk" Oropharyngeal Carcinoma After Intensity Modulated Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017 03 15; 97(4):700-708.
    View in: PubMed
    Score: 0.035
  99. Association of Body Composition With Survival and Locoregional Control of Radiotherapy-Treated Head and Neck Squamous Cell Carcinoma. JAMA Oncol. 2016 Jun 01; 2(6):782-9.
    View in: PubMed
    Score: 0.035
  100. Improved setup and positioning accuracy using a three-point customized cushion/mask/bite-block immobilization system for stereotactic reirradiation of head and neck cancer. J Appl Clin Med Phys. 2016 05 08; 17(3):180-189.
    View in: PubMed
    Score: 0.035
  101. Dosimetric advantages of intensity-modulated proton therapy for oropharyngeal cancer compared with intensity-modulated radiation: A case-matched control analysis. Med Dosim. 2016; 41(3):189-94.
    View in: PubMed
    Score: 0.035
  102. Reirradiation of Head and Neck Cancers With Proton Therapy: Outcomes and Analyses. Int J Radiat Oncol Biol Phys. 2016 09 01; 96(1):30-41.
    View in: PubMed
    Score: 0.034
  103. Postoperative Intensity-Modulated Proton Therapy for Head and Neck Adenoid Cystic Carcinoma. Int J Part Ther. 2016 Mar; 2(4):533-543.
    View in: PubMed
    Score: 0.034
  104. Reirradiation of Head and Neck Cancers With Intensity Modulated Radiation Therapy: Outcomes and Analyses. Int J Radiat Oncol Biol Phys. 2016 07 15; 95(4):1117-31.
    View in: PubMed
    Score: 0.034
  105. Outcomes for hypopharyngeal carcinoma treated with organ-preservation therapy. Head Neck. 2016 04; 38 Suppl 1:E2091-9.
    View in: PubMed
    Score: 0.034
  106. Intensity Modulated Proton Therapy Versus Intensity Modulated Photon Radiation Therapy for Oropharyngeal Cancer: First Comparative Results of Patient-Reported Outcomes. Int J Radiat Oncol Biol Phys. 2016 07 15; 95(4):1107-14.
    View in: PubMed
    Score: 0.034
  107. Magnetic resonance imaging of swallowing-related structures in nasopharyngeal carcinoma patients receiving IMRT: Longitudinal dose-response characterization of quantitative signal kinetics. Radiother Oncol. 2016 Feb; 118(2):315-22.
    View in: PubMed
    Score: 0.034
  108. Prognostic value of p16 expression in Epstein-Barr virus-positive nasopharyngeal carcinomas. Head Neck. 2016 04; 38 Suppl 1:E1459-66.
    View in: PubMed
    Score: 0.033
  109. Definitive proton radiation therapy and concurrent cisplatin for unresectable head and neck adenoid cystic carcinoma: A series of 9 cases and a critical review of the literature. Head Neck. 2016 04; 38 Suppl 1:E1472-80.
    View in: PubMed
    Score: 0.033
  110. The role of elective nodal irradiation for esthesioneuroblastoma patients with clinically negative neck. Pract Radiat Oncol. 2016 Jul-Aug; 6(4):241-247.
    View in: PubMed
    Score: 0.033
  111. Prognostic value of pretherapy platelet elevation in oropharyngeal cancer patients treated with chemoradiation. Int J Cancer. 2016 Mar 01; 138(5):1290-7.
    View in: PubMed
    Score: 0.033
  112. Intravoxel incoherent motion imaging kinetics during chemoradiotherapy for human papillomavirus-associated squamous cell carcinoma of the oropharynx: preliminary results from a prospective pilot study. NMR Biomed. 2015 Dec; 28(12):1645-54.
    View in: PubMed
    Score: 0.033
  113. A Multidisciplinary Orbit-Sparing Treatment Approach That Includes Proton Therapy for Epithelial Tumors of the Orbit and Ocular Adnexa. Int J Radiat Oncol Biol Phys. 2016 May 01; 95(1):344-352.
    View in: PubMed
    Score: 0.033
  114. Disease control and toxicity outcomes for T4 carcinoma of the nasopharynx treated with intensity-modulated radiotherapy. Head Neck. 2016 04; 38 Suppl 1:E925-33.
    View in: PubMed
    Score: 0.033
  115. Merkel cell carcinoma of the head and neck: Favorable outcomes with radiotherapy. Head Neck. 2016 04; 38 Suppl 1:E452-8.
    View in: PubMed
    Score: 0.033
  116. Orbital carcinomas treated with adjuvant intensity-modulated radiation therapy. Head Neck. 2016 04; 38 Suppl 1:E580-7.
    View in: PubMed
    Score: 0.033
  117. Quality assurance assessment of diagnostic and radiation therapy-simulation CT image registration for head and neck radiation therapy: anatomic region of interest-based comparison of rigid and deformable algorithms. Radiology. 2015 Mar; 274(3):752-63.
    View in: PubMed
    Score: 0.031
  118. Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer. Radiother Oncol. 2014 Sep; 112(3):321-5.
    View in: PubMed
    Score: 0.031
  119. Multifield optimization intensity modulated proton therapy for head and neck tumors: a translation to practice. Int J Radiat Oncol Biol Phys. 2014 Jul 15; 89(4):846-53.
    View in: PubMed
    Score: 0.030
  120. Beam path toxicity in candidate organs-at-risk: assessment of radiation emetogenesis for patients receiving head and neck intensity modulated radiotherapy. Radiother Oncol. 2014 May; 111(2):281-8.
    View in: PubMed
    Score: 0.030
  121. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: quality assurance implications for target volume and organs-at-risk margination using daily CT on- rails imaging. J Appl Clin Med Phys. 2014 Jan 08; 16(1):5108.
    View in: PubMed
    Score: 0.029
  122. Clinical characteristics of patients with multiple potentially human papillomavirus-related malignancies. Head Neck. 2014 Jun; 36(6):819-25.
    View in: PubMed
    Score: 0.029
  123. Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy. Pract Radiat Oncol. 2014 Jan-Feb; 4(1):e31-7.
    View in: PubMed
    Score: 0.028
  124. Prospective assessment of an atlas-based intervention combined with real-time software feedback in contouring lymph node levels and organs-at-risk in the head and neck: Quantitative assessment of conformance to expert delineation. Pract Radiat Oncol. 2013 Jul-Sep; 3(3):186-193.
    View in: PubMed
    Score: 0.027
  125. Unilateral radiotherapy for the treatment of tonsil cancer. Int J Radiat Oncol Biol Phys. 2012 May 01; 83(1):204-9.
    View in: PubMed
    Score: 0.025
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.