Connection

Co-Authors

This is a "connection" page, showing publications co-authored by MICHAEL GILLIN and NARAYAN SAHOO.
Connection Strength

3.264
  1. A procedure for calculation of monitor units for passively scattered proton radiotherapy beams. Med Phys. 2008 Nov; 35(11):5088-97.
    View in: PubMed
    Score: 0.332
  2. Evaluation of the high definition field of view option of a large-bore computed tomography scanner for radiation therapy simulation. Phys Imaging Radiat Oncol. 2020 Jan; 13:44-49.
    View in: PubMed
    Score: 0.183
  3. 3D treatment planning system-Varian Eclipse for proton therapy planning. Med Dosim. 2018 Summer; 43(2):184-194.
    View in: PubMed
    Score: 0.162
  4. Quality assurance of proton beams using a multilayer ionization chamber system. Med Phys. 2013 Sep; 40(9):092102.
    View in: PubMed
    Score: 0.116
  5. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system. Med Phys. 2013 Apr; 40(4):041723.
    View in: PubMed
    Score: 0.113
  6. SU-E-T-291: Dosimetry of Double Scattered Proton Beam Fields Used for Cranio-Spinal Irradiation. Med Phys. 2012 Jun; 39(6Part14):3770.
    View in: PubMed
    Score: 0.106
  7. SU-D-BRCD-01: Evaluation of Zebra Multi-Layer Ionization Chamber System for Patient Treatment Field and Machine QA for Spot Scanning and Passive Scattering Proton Beams. Med Phys. 2012 Jun; 39(6Part3):3613.
    View in: PubMed
    Score: 0.106
  8. A procedure to determine the planar integral spot dose values of proton pencil beam spots. Med Phys. 2012 Feb; 39(2):891-900.
    View in: PubMed
    Score: 0.104
  9. Patient-specific quality assurance for prostate cancer patients receiving spot scanning proton therapy using single-field uniform dose. Int J Radiat Oncol Biol Phys. 2011 Oct 01; 81(2):552-9.
    View in: PubMed
    Score: 0.097
  10. Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array. Med Phys. 2010 Nov; 37(11):5831-7.
    View in: PubMed
    Score: 0.095
  11. Experimental characterization of the low-dose envelope of spot scanning proton beams. Phys Med Biol. 2010 Jun 21; 55(12):3467-78.
    View in: PubMed
    Score: 0.092
  12. Intensity modulated proton therapy treatment planning using single-field optimization: the impact of monitor unit constraints on plan quality. Med Phys. 2010 Mar; 37(3):1210-9.
    View in: PubMed
    Score: 0.091
  13. Measurement of neutron dose equivalent and its dependence on beam configuration for a passive scattering proton delivery system. Int J Radiat Oncol Biol Phys. 2010 Apr; 76(5):1563-70.
    View in: PubMed
    Score: 0.090
  14. Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Med Phys. 2010 Jan; 37(1):154-63.
    View in: PubMed
    Score: 0.090
  15. Computation of doses for large-angle Coulomb scattering of proton pencil beams. Phys Med Biol. 2009 Dec 21; 54(24):7285-300.
    View in: PubMed
    Score: 0.089
  16. Comparison of surface doses from spot scanning and passively scattered proton therapy beams. Phys Med Biol. 2009 Jul 21; 54(14):N295-302.
    View in: PubMed
    Score: 0.087
  17. An overview of the comprehensive proton therapy machine quality assurance procedures implemented at The University of Texas M. D. Anderson Cancer Center Proton Therapy Center-Houston. Med Phys. 2009 Jun; 36(6):2269-82.
    View in: PubMed
    Score: 0.086
  18. LiF TLD-100 as a dosimeter in high energy proton beam therapy--can it yield accurate results? Med Dosim. 2010; 35(1):63-6.
    View in: PubMed
    Score: 0.086
  19. Use of a two-dimensional ionization chamber array for proton therapy beam quality assurance. Med Phys. 2008 Sep; 35(9):3889-94.
    View in: PubMed
    Score: 0.082
  20. Statistical evaluation of worst-case robust optimization intensity-modulated proton therapy plans using an exhaustive sampling approach. Radiat Oncol. 2019 Jul 19; 14(1):129.
    View in: PubMed
    Score: 0.044
  21. Proton versus photon radiation-induced cell death in head and neck cancer cells. Head Neck. 2019 01; 41(1):46-55.
    View in: PubMed
    Score: 0.042
  22. Synchrotron-Based Pencil Beam Scanning Nozzle with an Integrated Mini-Ridge Filter: A Dosimetric Study to Optimize Treatment Delivery. Cancers (Basel). 2017 Dec 13; 9(12).
    View in: PubMed
    Score: 0.039
  23. Technical Note: Dosimetric characteristics of the ocular beam line and commissioning data for an ocular proton therapy planning system at the Proton Therapy Center Houston. Med Phys. 2017 Dec; 44(12):6661-6671.
    View in: PubMed
    Score: 0.039
  24. Human papillomavirus status and the relative biological effectiveness of proton radiotherapy in head and neck cancer cells. Head Neck. 2017 04; 39(4):708-715.
    View in: PubMed
    Score: 0.037
  25. Robust Optimization for Intensity Modulated Proton Therapy Plans with Multi-Isocenter Large Fields. Int J Part Ther. 2016; 3(2):305-311.
    View in: PubMed
    Score: 0.037
  26. Spot scanning proton therapy minimizes neutron dose in the setting of radiation therapy administered during pregnancy. J Appl Clin Med Phys. 2016 09 08; 17(5):366-376.
    View in: PubMed
    Score: 0.036
  27. Proton Beam Therapy for Localized Prostate Cancer: Results from a Prospective Quality-of-Life Trial. Int J Part Ther. 2016; 3(1):27-36.
    View in: PubMed
    Score: 0.036
  28. Novel Hybrid Scattering- and Scanning-Beam Proton Therapy Approach. Int J Part Ther. 2016; 3(1):37-50.
    View in: PubMed
    Score: 0.036
  29. Quantitative analysis of treatment process time and throughput capacity for spot scanning proton therapy. Med Phys. 2016 Jul; 43(7):3975.
    View in: PubMed
    Score: 0.035
  30. Motion-robust intensity-modulated proton therapy for distal esophageal cancer. Med Phys. 2016 Mar; 43(3):1111-8.
    View in: PubMed
    Score: 0.034
  31. Selective robust optimization: A new intensity-modulated proton therapy optimization strategy. Med Phys. 2015 Aug; 42(8):4840-7.
    View in: PubMed
    Score: 0.033
  32. Towards effective and efficient patient-specific quality assurance for spot scanning proton therapy. Cancers (Basel). 2015 Apr 10; 7(2):631-47.
    View in: PubMed
    Score: 0.032
  33. Clinical implementation of intensity modulated proton therapy for thoracic malignancies. Int J Radiat Oncol Biol Phys. 2014 Nov 15; 90(4):809-18.
    View in: PubMed
    Score: 0.031
  34. A single-field integrated boost treatment planning technique for spot scanning proton therapy. Radiat Oncol. 2014 Sep 11; 9:202.
    View in: PubMed
    Score: 0.031
  35. Evaluation and mitigation of the interplay effects of intensity modulated proton therapy for lung cancer in a clinical setting. Pract Radiat Oncol. 2014 Nov-Dec; 4(6):e259-68.
    View in: PubMed
    Score: 0.031
  36. Multifield optimization intensity modulated proton therapy for head and neck tumors: a translation to practice. Int J Radiat Oncol Biol Phys. 2014 Jul 15; 89(4):846-53.
    View in: PubMed
    Score: 0.030
  37. Relative stopping power measurements to aid in the design of anthropomorphic phantoms for proton radiotherapy. J Appl Clin Med Phys. 2014 Mar 06; 15(2):4523.
    View in: PubMed
    Score: 0.030
  38. On the interplay effects with proton scanning beams in stage III lung cancer. Med Phys. 2014 Feb; 41(2):021721.
    View in: PubMed
    Score: 0.030
  39. Improving spot-scanning proton therapy patient specific quality assurance with HPlusQA, a second-check dose calculation engine. Med Phys. 2013 Dec; 40(12):121708.
    View in: PubMed
    Score: 0.029
  40. Quality of life and toxicity from passively scattered and spot-scanning proton beam therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2013 Dec 01; 87(5):946-53.
    View in: PubMed
    Score: 0.029
  41. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: a treatment planning comparison. Med Dosim. 2013; 38(4):390-4.
    View in: PubMed
    Score: 0.029
  42. Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance. Med Phys. 2013 Feb; 40(2):021703.
    View in: PubMed
    Score: 0.028
  43. SU-E-T-103: Three-Dimensional Measurements of Dose and LET from a Proton Beam via Polymer Gel Dosimetry. Med Phys. 2012 Jun; 39(6Part11):3726.
    View in: PubMed
    Score: 0.027
  44. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system. Med Phys. 2012 Mar; 39(3):1239-46.
    View in: PubMed
    Score: 0.026
  45. Parameterization of multiple Bragg curves for scanning proton beams using simultaneous fitting of multiple curves. Phys Med Biol. 2011 Dec 21; 56(24):7725-35.
    View in: PubMed
    Score: 0.026
  46. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy. Med Phys. 2011 Jul; 38(7):4329-37.
    View in: PubMed
    Score: 0.025
  47. A CT-based software tool for evaluating compensator quality in passively scattered proton therapy. Phys Med Biol. 2010 Nov 21; 55(22):6759-71.
    View in: PubMed
    Score: 0.024
  48. An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle. Med Phys. 2010 Sep; 37(9):4960-70.
    View in: PubMed
    Score: 0.024
  49. Energy dependence and dose response of Gafchromic EBT2 film over a wide range of photon, electron, and proton beam energies. Med Phys. 2010 May; 37(5):1942-7.
    View in: PubMed
    Score: 0.023
  50. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams. Phys Med Biol. 2010 Feb 07; 55(3):711-21.
    View in: PubMed
    Score: 0.023
  51. Liquid scintillator for 2D dosimetry for high-energy photon beams. Med Phys. 2009 May; 36(5):1478-85.
    View in: PubMed
    Score: 0.021
  52. Exploration of the potential of liquid scintillators for real-time 3D dosimetry of intensity modulated proton beams. Med Phys. 2009 May; 36(5):1736-43.
    View in: PubMed
    Score: 0.021
  53. Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions. Phys Med Biol. 2008 Aug 21; 53(16):4455-70.
    View in: PubMed
    Score: 0.020
  54. Incorporating partial shining effects in proton pencil-beam dose calculation. Phys Med Biol. 2008 Feb 07; 53(3):605-16.
    View in: PubMed
    Score: 0.020
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.