Connection

XIAORONG RONALD ZHU to Radiotherapy Planning, Computer-Assisted

This is a "connection" page, showing publications XIAORONG RONALD ZHU has written about Radiotherapy Planning, Computer-Assisted.
  1. 3D treatment planning system-Varian Eclipse for proton therapy planning. Med Dosim. 2018 Summer; 43(2):184-194.
    View in: PubMed
    Score: 0.313
  2. Technical Note: Dosimetric characteristics of the ocular beam line and commissioning data for an ocular proton therapy planning system at the Proton Therapy Center Houston. Med Phys. 2017 Dec; 44(12):6661-6671.
    View in: PubMed
    Score: 0.299
  3. A single-field integrated boost treatment planning technique for spot scanning proton therapy. Radiat Oncol. 2014 Sep 11; 9:202.
    View in: PubMed
    Score: 0.241
  4. Evaluation of the systematic error in using 3D dose calculation in scanning beam proton therapy for lung cancer. J Appl Clin Med Phys. 2014 Sep 08; 15(5):4810.
    View in: PubMed
    Score: 0.241
  5. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system. Med Phys. 2013 Apr; 40(4):041723.
    View in: PubMed
    Score: 0.218
  6. Dynamically accumulated dose and 4D accumulated dose for moving tumors. Med Phys. 2012 Dec; 39(12):7359-67.
    View in: PubMed
    Score: 0.213
  7. Uncertainty incorporated beam angle optimization for IMPT treatment planning. Med Phys. 2012 Aug; 39(8):5248-56.
    View in: PubMed
    Score: 0.208
  8. Patient-specific quality assurance for prostate cancer patients receiving spot scanning proton therapy using single-field uniform dose. Int J Radiat Oncol Biol Phys. 2011 Oct 01; 81(2):552-9.
    View in: PubMed
    Score: 0.188
  9. Intensity modulated proton therapy treatment planning using single-field optimization: the impact of monitor unit constraints on plan quality. Med Phys. 2010 Mar; 37(3):1210-9.
    View in: PubMed
    Score: 0.176
  10. Treatment planning system evaluation for mesothelioma IMRT. Lung Cancer. 2005 Jul; 49 Suppl 1:S75-81.
    View in: PubMed
    Score: 0.127
  11. Planning quality and delivery efficiency of sMLC delivered IMRT treatment of oropharyngeal cancers evaluated by RTOG H-0022 dosimetric criteria. J Appl Clin Med Phys. 2004; 5(4):80-95.
    View in: PubMed
    Score: 0.121
  12. Effectiveness of robust optimization in intensity-modulated proton therapy planning for head and neck cancers. Med Phys. 2013 May; 40(5):051711.
    View in: PubMed
    Score: 0.109
  13. Intensity modulated proton arc therapy via geometry-based energy selection for ependymoma. J Appl Clin Med Phys. 2023 Jul; 24(7):e13954.
    View in: PubMed
    Score: 0.108
  14. Dependence of virtual wedge factor on dose calibration and monitor units. Med Phys. 2001 Feb; 28(2):174-7.
    View in: PubMed
    Score: 0.094
  15. Comparison of dosimetric characteristics of Siemens virtual and physical wedges. Med Phys. 2000 Oct; 27(10):2267-77.
    View in: PubMed
    Score: 0.092
  16. Quantifying the accuracy of deformable image registration for cone-beam computed tomography with a physical phantom. J Appl Clin Med Phys. 2019 Oct; 20(10):92-100.
    View in: PubMed
    Score: 0.085
  17. Characterization of a new physical phantom for testing rigid and deformable image registration. J Appl Clin Med Phys. 2019 Jan; 20(1):145-153.
    View in: PubMed
    Score: 0.081
  18. Geometric and dosimetric analysis of multileaf collimation conformity. Radiother Oncol. 1998 Apr; 47(1):63-8.
    View in: PubMed
    Score: 0.077
  19. Multiple-CT optimization of intensity-modulated proton therapy - Is it possible to eliminate adaptive planning? Radiother Oncol. 2018 07; 128(1):167-173.
    View in: PubMed
    Score: 0.075
  20. A convolution-adapted ratio-TAR algorithm for 3D photon beam treatment planning. Med Phys. 1995 Aug; 22(8):1315-27.
    View in: PubMed
    Score: 0.064
  21. Reducing Dose Uncertainty for Spot-Scanning Proton Beam Therapy of Moving Tumors by Optimizing the Spot Delivery Sequence. Int J Radiat Oncol Biol Phys. 2015 Nov 01; 93(3):547-56.
    View in: PubMed
    Score: 0.063
  22. Robust optimization in intensity-modulated proton therapy to account for anatomy changes in lung cancer patients. Radiother Oncol. 2015 Mar; 114(3):367-72.
    View in: PubMed
    Score: 0.062
  23. Proton energy optimization and reduction for intensity-modulated proton therapy. Phys Med Biol. 2014 Nov 07; 59(21):6341-54.
    View in: PubMed
    Score: 0.060
  24. Is there a clinical benefit with a smooth compensator design compared with a plunged compensator design for passive scattered protons? Med Dosim. 2015; 40(1):37-43.
    View in: PubMed
    Score: 0.060
  25. Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers. Pract Radiat Oncol. 2015 Mar-Apr; 5(2):e77-86.
    View in: PubMed
    Score: 0.060
  26. Intensity modulated proton therapy for craniospinal irradiation: organ-at-risk exposure and a low-gradient junctioning technique. Int J Radiat Oncol Biol Phys. 2014 Nov 01; 90(3):637-44.
    View in: PubMed
    Score: 0.060
  27. Evaluation and mitigation of the interplay effects of intensity modulated proton therapy for lung cancer in a clinical setting. Pract Radiat Oncol. 2014 Nov-Dec; 4(6):e259-68.
    View in: PubMed
    Score: 0.060
  28. Multifield optimization intensity modulated proton therapy for head and neck tumors: a translation to practice. Int J Radiat Oncol Biol Phys. 2014 Jul 15; 89(4):846-53.
    View in: PubMed
    Score: 0.059
  29. Dosimetric benefits of robust treatment planning for intensity modulated proton therapy for base-of-skull cancers. Pract Radiat Oncol. 2014 Nov-Dec; 4(6):384-91.
    View in: PubMed
    Score: 0.057
  30. Improving spot-scanning proton therapy patient specific quality assurance with HPlusQA, a second-check dose calculation engine. Med Phys. 2013 Dec; 40(12):121708.
    View in: PubMed
    Score: 0.057
  31. Patient-specific quantification of respiratory motion-induced dose uncertainty for step-and-shoot IMRT of lung cancer. Med Phys. 2013 Dec; 40(12):121712.
    View in: PubMed
    Score: 0.057
  32. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: a treatment planning comparison. Med Dosim. 2013; 38(4):390-4.
    View in: PubMed
    Score: 0.056
  33. Preliminary evaluation of multifield and single-field optimization for the treatment planning of spot-scanning proton therapy of head and neck cancer. Med Phys. 2013 Aug; 40(8):081709.
    View in: PubMed
    Score: 0.056
  34. Incorporating deliverable monitor unit constraints into spot intensity optimization in intensity-modulated proton therapy treatment planning. Phys Med Biol. 2013 Aug 07; 58(15):5113-25.
    View in: PubMed
    Score: 0.055
  35. Statistical assessment of proton treatment plans under setup and range uncertainties. Int J Radiat Oncol Biol Phys. 2013 Aug 01; 86(5):1007-13.
    View in: PubMed
    Score: 0.055
  36. Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance. Med Phys. 2013 Feb; 40(2):021703.
    View in: PubMed
    Score: 0.054
  37. PTV-based IMPT optimization incorporating planning risk volumes vs robust optimization. Med Phys. 2013 Feb; 40(2):021709.
    View in: PubMed
    Score: 0.054
  38. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration. Phys Med Biol. 2012 Jul 07; 57(13):4095-115.
    View in: PubMed
    Score: 0.051
  39. Fast range-corrected proton dose approximation method using prior dose distribution. Phys Med Biol. 2012 Jun 07; 57(11):3555-69.
    View in: PubMed
    Score: 0.051
  40. A procedure to determine the planar integral spot dose values of proton pencil beam spots. Med Phys. 2012 Feb; 39(2):891-900.
    View in: PubMed
    Score: 0.050
  41. A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties. Int J Radiat Oncol Biol Phys. 2012 Feb 01; 82(2):e329-36.
    View in: PubMed
    Score: 0.048
  42. Characterization of dose impact on IMRT and VMAT from couch attenuation for two Varian couches. J Appl Clin Med Phys. 2011 Mar 02; 12(3):3471.
    View in: PubMed
    Score: 0.047
  43. Spot scanning proton beam therapy for prostate cancer: treatment planning technique and analysis of consequences of rotational and translational alignment errors. Int J Radiat Oncol Biol Phys. 2010 Oct 01; 78(2):428-34.
    View in: PubMed
    Score: 0.044
  44. Dose perturbations from implanted helical gold markers in proton therapy of prostate cancer. J Appl Clin Med Phys. 2009 Jan 27; 10(1):2875.
    View in: PubMed
    Score: 0.041
  45. Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions. Phys Med Biol. 2008 Aug 21; 53(16):4455-70.
    View in: PubMed
    Score: 0.039
  46. Incorporating partial shining effects in proton pencil-beam dose calculation. Phys Med Biol. 2008 Feb 07; 53(3):605-16.
    View in: PubMed
    Score: 0.038
  47. Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling. Med Phys. 2007 Sep; 34(9):3520-9.
    View in: PubMed
    Score: 0.037
  48. 4D Proton treatment planning strategy for mobile lung tumors. Int J Radiat Oncol Biol Phys. 2007 Mar 01; 67(3):906-14.
    View in: PubMed
    Score: 0.036
  49. Effect of anatomic motion on proton therapy dose distributions in prostate cancer treatment. Int J Radiat Oncol Biol Phys. 2007 Feb 01; 67(2):620-9.
    View in: PubMed
    Score: 0.036
  50. Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2006 Apr 01; 64(5):1559-69.
    View in: PubMed
    Score: 0.034
  51. Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator. Med Phys. 2002 Aug; 29(8):1687-92.
    View in: PubMed
    Score: 0.026
  52. Implementation and verification of virtual wedge in a three-dimensional radiotherapy planning system. Med Phys. 2000 Jul; 27(7):1635-43.
    View in: PubMed
    Score: 0.022
  53. Transitioning from measurement-based to combined patient-specific quality assurance for intensity-modulated proton therapy. Br J Radiol. 2020 Mar; 93(1107):20190669.
    View in: PubMed
    Score: 0.022
  54. A critical evaluation of the planning target volume for 3-D conformal radiotherapy of prostate cancer. Int J Radiat Oncol Biol Phys. 1998 Aug 01; 42(1):213-21.
    View in: PubMed
    Score: 0.020
  55. Multiple machine implementation of enhanced dynamic wedge. Int J Radiat Oncol Biol Phys. 1998 Mar 01; 40(4):977-85.
    View in: PubMed
    Score: 0.019
  56. Life years lost attributable to late effects after radiotherapy for early stage Hodgkin lymphoma: The impact of proton therapy and/or deep inspiration breath hold. Radiother Oncol. 2017 10; 125(1):41-47.
    View in: PubMed
    Score: 0.018
  57. The influence of angular misalignment on fixed-portal intensity modulated radiation therapy. Med Phys. 1997 Jul; 24(7):1123-39.
    View in: PubMed
    Score: 0.018
  58. Consensus Statement on Proton Therapy in Early-Stage and Locally Advanced Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2016 May 01; 95(1):505-516.
    View in: PubMed
    Score: 0.017
  59. A Retrospective Evaluation of the Benefit of Referring Pediatric Cancer Patients to an External Proton Therapy Center. Pediatr Blood Cancer. 2016 Feb; 63(2):262-9.
    View in: PubMed
    Score: 0.016
  60. Measurement of a photon penumbra-generating kernel for a convolution-adapted ratio-TAR algorithm for 3D treatment planning. Med Phys. 1995 Sep; 22(9):1395-403.
    View in: PubMed
    Score: 0.016
  61. Selective robust optimization: A new intensity-modulated proton therapy optimization strategy. Med Phys. 2015 Aug; 42(8):4840-7.
    View in: PubMed
    Score: 0.016
  62. Spot scanning proton therapy for malignancies of the base of skull: treatment planning, acute toxicities, and preliminary clinical outcomes. Int J Radiat Oncol Biol Phys. 2014 Nov 01; 90(3):540-6.
    View in: PubMed
    Score: 0.015
  63. Clinical implementation of intensity modulated proton therapy for thoracic malignancies. Int J Radiat Oncol Biol Phys. 2014 Nov 15; 90(4):809-18.
    View in: PubMed
    Score: 0.015
  64. On the interplay effects with proton scanning beams in stage III lung cancer. Med Phys. 2014 Feb; 41(2):021721.
    View in: PubMed
    Score: 0.014
  65. Comparison of proton therapy techniques for treatment of the whole brain as a component of craniospinal radiation. Radiat Oncol. 2013 Dec 17; 8:289.
    View in: PubMed
    Score: 0.014
  66. Intensity-modulated proton therapy further reduces normal tissue exposure during definitive therapy for locally advanced distal esophageal tumors: a dosimetric study. Int J Radiat Oncol Biol Phys. 2011 Dec 01; 81(5):1336-42.
    View in: PubMed
    Score: 0.012
  67. Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array. Med Phys. 2010 Nov; 37(11):5831-7.
    View in: PubMed
    Score: 0.012
  68. The M. D. Anderson proton therapy system. Med Phys. 2009 Sep; 36(9):4068-83.
    View in: PubMed
    Score: 0.011
  69. Improving accuracy of electron density measurement in the presence of metallic implants using orthovoltage computed tomography. Med Phys. 2008 May; 35(5):1932-41.
    View in: PubMed
    Score: 0.010
  70. Reducing metal artifacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys. 2007 Mar 01; 67(3):924-32.
    View in: PubMed
    Score: 0.009
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.