Connection

Co-Authors

This is a "connection" page, showing publications co-authored by RADHE MOHAN and OLEG N VASSILIEV.
Connection Strength

6.132
  1. Monte Carlo evaluation of target dose coverage in lung stereotactic body radiation therapy with flattening filter-free beams. J Radiother Pract. 2022 Mar; 21(1):81-87.
    View in: PubMed
    Score: 0.754
  2. Using FFF Beams to Improve the Therapeutic Ratio of Lung SBRT. J Radiother Pract. 2021 Dec; 20(4):419-425.
    View in: PubMed
    Score: 0.743
  3. A simple model for calculating relative biological effectiveness of X-rays and gamma radiation in cell survival. Br J Radiol. 2020 Aug; 93(1112):20190949.
    View in: PubMed
    Score: 0.735
  4. Systematic microdosimetric data for protons of therapeutic energies calculated with Geant4-DNA. Phys Med Biol. 2019 11 04; 64(21):215018.
    View in: PubMed
    Score: 0.706
  5. Radiotherapy of lung cancers: FFF beams improve dose coverage at tumor periphery compromised by electronic disequilibrium. Phys Med Biol. 2018 09 28; 63(19):195007.
    View in: PubMed
    Score: 0.654
  6. Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications. Phys Med Biol. 2018 03 02; 63(5):055007.
    View in: PubMed
    Score: 0.628
  7. A new formalism for modelling parameters a and ? of the linear-quadratic model of cell survival for hadron therapy. Phys Med Biol. 2017 Oct 03; 62(20):8041-8059.
    View in: PubMed
    Score: 0.611
  8. Stereotactic radiotherapy for lung cancer using a flattening filter free Clinac. J Appl Clin Med Phys. 2009 Jan 27; 10(1):14-21.
    View in: PubMed
    Score: 0.335
  9. Impact of Intra-Fractional Motion on Dose Distributions in Lung IMRT. J Radiother Pract. 2021 Mar; 20(1):12-16.
    View in: PubMed
    Score: 0.179
  10. Out-of-field photon dose following removal of the flattening filter from a medical accelerator. Phys Med Biol. 2010 Apr 21; 55(8):2155-66.
    View in: PubMed
    Score: 0.091
  11. Treatment vault shielding for a flattening filter-free medical linear accelerator. Phys Med Biol. 2009 Mar 07; 54(5):1265-73.
    View in: PubMed
    Score: 0.084
  12. Energy spectra, sources, and shielding considerations for neutrons generated by a flattening filter-free Clinac. Med Phys. 2008 May; 35(5):1906-11.
    View in: PubMed
    Score: 0.079
  13. Treatment-planning study of prostate cancer intensity-modulated radiotherapy with a Varian Clinac operated without a flattening filter. Int J Radiat Oncol Biol Phys. 2007 Aug 01; 68(5):1567-71.
    View in: PubMed
    Score: 0.075
  14. Dosimetric verification for intensity-modulated radiotherapy of thoracic cancers using experimental and Monte Carlo approaches. Int J Radiat Oncol Biol Phys. 2006 Nov 01; 66(3):939-48.
    View in: PubMed
    Score: 0.072
  15. Monte Carlo study of photon fields from a flattening filter-free clinical accelerator. Med Phys. 2006 Apr; 33(4):820-7.
    View in: PubMed
    Score: 0.069
  16. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys Med Biol. 2006 Apr 07; 51(7):1907-17.
    View in: PubMed
    Score: 0.069
  17. Monte Carlo calculations of the absorbed dose and energy dependence of plastic scintillators. Med Phys. 2005 May; 32(5):1265-9.
    View in: PubMed
    Score: 0.065
  18. Reference photon dosimetry data and reference phase space data for the 6 MV photon beam from varian clinac 2100 series linear accelerators. Med Phys. 2005 Jan; 32(1):137-48.
    View in: PubMed
    Score: 0.063
  19. Reduced neutron production through use of a flattening-filter-free accelerator. Int J Radiat Oncol Biol Phys. 2007 Jul 15; 68(4):1260-4.
    View in: PubMed
    Score: 0.019
  20. A Monte Carlo model for calculating out-of-field dose from a varian 6 MV beam. Med Phys. 2006 Nov; 33(11):4405-13.
    View in: PubMed
    Score: 0.018
  21. Monte Carlo study of backscatter in a flattening filter free clinical accelerator. Med Phys. 2006 Sep; 33(9):3270-3.
    View in: PubMed
    Score: 0.018
  22. A flattening filter free photon treatment concept evaluation with Monte Carlo. Med Phys. 2006 Jun; 33(6):1595-602.
    View in: PubMed
    Score: 0.017
  23. Properties of unflattened photon beams shaped by a multileaf collimator. Med Phys. 2006 Jun; 33(6):1738-46.
    View in: PubMed
    Score: 0.017
  24. Development and commissioning of a multileaf collimator model in monte carlo dose calculations for intensity-modulated radiation therapy. Med Phys. 2006 Mar; 33(3):770-81.
    View in: PubMed
    Score: 0.017
  25. MCNPX simulation of a multileaf collimator. Med Phys. 2006 Feb; 33(2):402-4.
    View in: PubMed
    Score: 0.017
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.