Connection

Co-Authors

This is a "connection" page, showing publications co-authored by RADHE MOHAN and DAVID RANDALL GROSSHANS.
Connection Strength

5.956
  1. Proton therapy reduces the likelihood of high-grade radiation-induced lymphopenia in glioblastoma patients: phase II randomized study of protons vs photons. Neuro Oncol. 2021 02 25; 23(2):284-294.
    View in: PubMed
    Score: 0.804
  2. Radiobiological issues in proton therapy. Acta Oncol. 2017 Nov; 56(11):1367-1373.
    View in: PubMed
    Score: 0.630
  3. Proton therapy - Present and future. Adv Drug Deliv Rev. 2017 01 15; 109:26-44.
    View in: PubMed
    Score: 0.600
  4. Oxygen depletion in FLASH ultra-high-dose-rate radiotherapy: A molecular dynamics simulation. Med Phys. 2020 Dec; 47(12):6551-6561.
    View in: PubMed
    Score: 0.197
  5. A simple model for calculating relative biological effectiveness of X-rays and gamma radiation in cell survival. Br J Radiol. 2020 Aug; 93(1112):20190949.
    View in: PubMed
    Score: 0.191
  6. A DNA damage multiscale model for NTCP in proton and hadron therapy. Med Phys. 2020 Apr; 47(4):2005-2012.
    View in: PubMed
    Score: 0.187
  7. Systematic microdosimetric data for protons of therapeutic energies calculated with Geant4-DNA. Phys Med Biol. 2019 11 04; 64(21):215018.
    View in: PubMed
    Score: 0.184
  8. Reply to Comment on 'Linear energy transfer incorporated intensity modulated proton therapy optimization'. Phys Med Biol. 2019 02 27; 64(5):058002.
    View in: PubMed
    Score: 0.175
  9. Using the Proton Energy Spectrum and Microdosimetry to Model Proton Relative Biological Effectiveness. Int J Radiat Oncol Biol Phys. 2019 06 01; 104(2):316-324.
    View in: PubMed
    Score: 0.174
  10. A mechanistic relative biological effectiveness model-based biological dose optimization for charged particle radiobiology studies. Phys Med Biol. 2018 12 21; 64(1):015008.
    View in: PubMed
    Score: 0.173
  11. Fixed- versus Variable-RBE Computations for Intensity Modulated Proton Therapy. Adv Radiat Oncol. 2019 Jan-Mar; 4(1):156-167.
    View in: PubMed
    Score: 0.173
  12. RBE Model-Based Biological Dose Optimization for Proton Radiobiology Studies. Int J Part Ther. 2018; 5(1):160-171.
    View in: PubMed
    Score: 0.170
  13. Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications. Phys Med Biol. 2018 03 02; 63(5):055007.
    View in: PubMed
    Score: 0.163
  14. Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy. Phys Med Biol. 2018 02 09; 63(4):045003.
    View in: PubMed
    Score: 0.163
  15. Proceedings of the National Cancer Institute Workshop on Charged Particle Radiobiology. Int J Radiat Oncol Biol Phys. 2018 03 15; 100(4):816-831.
    View in: PubMed
    Score: 0.161
  16. Linear energy transfer incorporated intensity modulated proton therapy optimization. Phys Med Biol. 2017 12 19; 63(1):015013.
    View in: PubMed
    Score: 0.161
  17. A new formalism for modelling parameters a and ? of the linear-quadratic model of cell survival for hadron therapy. Phys Med Biol. 2017 Oct 03; 62(20):8041-8059.
    View in: PubMed
    Score: 0.159
  18. A model for relative biological effectiveness of therapeutic proton beams based on a global fit of cell survival data. Sci Rep. 2017 08 21; 7(1):8340.
    View in: PubMed
    Score: 0.158
  19. The role of image-guided intensity modulated proton therapy in glioma. Neuro Oncol. 2017 04 01; 19(suppl_2):ii30-ii37.
    View in: PubMed
    Score: 0.153
  20. Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Sci Rep. 2015 May 18; 5:9850.
    View in: PubMed
    Score: 0.135
  21. Dosimetric benefits of robust treatment planning for intensity modulated proton therapy for base-of-skull cancers. Pract Radiat Oncol. 2014 Nov-Dec; 4(6):384-91.
    View in: PubMed
    Score: 0.123
  22. Is there an impact of heart exposure on the incidence of radiation pneumonitis? Analysis of data from a large clinical cohort. Acta Oncol. 2014 May; 53(5):590-6.
    View in: PubMed
    Score: 0.120
  23. Incorporating variable RBE in IMPT optimization for ependymoma. J Appl Clin Med Phys. 2024 Jan; 25(1):e14207.
    View in: PubMed
    Score: 0.061
  24. Roadmap: helium ion therapy. Phys Med Biol. 2022 08 05; 67(15).
    View in: PubMed
    Score: 0.056
  25. A framework for voxel-based assessment of biological effect after proton radiotherapy in pediatric brain cancer patients using multi-modal imaging. Med Phys. 2021 Jul; 48(7):4110-4121.
    View in: PubMed
    Score: 0.051
  26. Mapping the Relative Biological Effectiveness of Proton, Helium and Carbon Ions with High-Throughput Techniques. Cancers (Basel). 2020 Dec 05; 12(12).
    View in: PubMed
    Score: 0.049
  27. Author Correction: Exploring the advantages of intensity-modulated proton therapy: experimental validation of biological effects using two different beam intensity-modulation patterns. Sci Rep. 2020 Oct 30; 10(1):19101.
    View in: PubMed
    Score: 0.049
  28. A biological effect-guided optimization approach using beam distal-edge avoidance for intensity-modulated proton therapy. Med Phys. 2020 Sep; 47(9):3816-3825.
    View in: PubMed
    Score: 0.048
  29. Exploring the advantages of intensity-modulated proton therapy: experimental validation of biological effects using two different beam intensity-modulation patterns. Sci Rep. 2020 02 21; 10(1):3199.
    View in: PubMed
    Score: 0.047
  30. Nonhomologous End Joining Is More Important Than Proton Linear Energy Transfer in Dictating Cell Death. Int J Radiat Oncol Biol Phys. 2019 12 01; 105(5):1119-1125.
    View in: PubMed
    Score: 0.045
  31. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med Phys. 2019 Mar; 46(3):e53-e78.
    View in: PubMed
    Score: 0.044
  32. Robust optimization to reduce the impact of biological effect variation from physical uncertainties in intensity-modulated proton therapy. Phys Med Biol. 2019 01 08; 64(2):025004.
    View in: PubMed
    Score: 0.043
  33. National Cancer Institute Workshop on Proton Therapy for Children: Considerations Regarding Brainstem Injury. Int J Radiat Oncol Biol Phys. 2018 05 01; 101(1):152-168.
    View in: PubMed
    Score: 0.041
  34. Erratum: "Monte Carlo simulations of 3 He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness" [Med. Phys. 43 (2), page range 761-776(2016)]. Med Phys. 2018 Mar; 45(3):1301.
    View in: PubMed
    Score: 0.041
  35. Erratum: "Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code" [Med. Phys. 42 (11), page range 6234-6247(2015)]. Med Phys. 2018 Mar; 45(3):1302.
    View in: PubMed
    Score: 0.041
  36. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams. Med Phys. 2017 Nov; 44(11):6061-6073.
    View in: PubMed
    Score: 0.040
  37. The Potential of Heavy-Ion Therapy to Improve Outcomes for Locally Advanced Non-Small Cell Lung Cancer. Front Oncol. 2017; 7:201.
    View in: PubMed
    Score: 0.039
  38. Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol. 2016 12; 121(3):395-401.
    View in: PubMed
    Score: 0.037
  39. Monte Carlo simulations of ?He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness. Med Phys. 2016 Feb; 43(2):761-76.
    View in: PubMed
    Score: 0.035
  40. Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code. Med Phys. 2015 Nov; 42(11):6234-47.
    View in: PubMed
    Score: 0.035
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.