Connection

Co-Authors

This is a "connection" page, showing publications co-authored by RADHE MOHAN and DRAGAN MIRKOVIC.
Connection Strength

1.679
  1. Fixed- versus Variable-RBE Computations for Intensity Modulated Proton Therapy. Adv Radiat Oncol. 2019 Jan-Mar; 4(1):156-167.
    View in: PubMed
    Score: 0.166
  2. Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy. Phys Med Biol. 2018 02 09; 63(4):045003.
    View in: PubMed
    Score: 0.156
  3. Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study. Phys Med Biol. 2016 Apr 07; 61(7):2633-45.
    View in: PubMed
    Score: 0.137
  4. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material. Med Phys. 2015 Nov; 42(11):6425-32.
    View in: PubMed
    Score: 0.134
  5. LET dependence of the response of EBT2 films in proton dosimetry modeled as a bimolecular chemical reaction. Phys Med Biol. 2013 Dec 07; 58(23):8477-91.
    View in: PubMed
    Score: 0.117
  6. Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency. Phys Med Biol. 2010 Dec 07; 55(23):7097-106.
    View in: PubMed
    Score: 0.095
  7. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams. Phys Med Biol. 2010 Feb 07; 55(3):711-21.
    View in: PubMed
    Score: 0.089
  8. Contemporary Proton Therapy Systems Adequately Protect Patients from Exposure to Stray Radiation. AIP Conf Proc. 2009 Mar 10; 1099(1):450-455.
    View in: PubMed
    Score: 0.084
  9. Density heterogeneities and the influence of multiple Coulomb and nuclear scatterings on the Bragg peak distal edge of proton therapy beams. Phys Med Biol. 2008 Sep 07; 53(17):4605-19.
    View in: PubMed
    Score: 0.081
  10. Can megavoltage computed tomography reduce proton range uncertainties in treatment plans for patients with large metal implants? Phys Med Biol. 2008 May 07; 53(9):2327-44.
    View in: PubMed
    Score: 0.079
  11. Mixed Effect Modeling of Dose and Linear Energy Transfer Correlations With Brain Image Changes After Intensity Modulated Proton Therapy for Skull Base Head and Neck Cancer. Int J Radiat Oncol Biol Phys. 2021 11 01; 111(3):684-692.
    View in: PubMed
    Score: 0.049
  12. A framework for voxel-based assessment of biological effect after proton radiotherapy in pediatric brain cancer patients using multi-modal imaging. Med Phys. 2021 Jul; 48(7):4110-4121.
    View in: PubMed
    Score: 0.049
  13. A DNA damage multiscale model for NTCP in proton and hadron therapy. Med Phys. 2020 Apr; 47(4):2005-2012.
    View in: PubMed
    Score: 0.045
  14. Patterns of Local-Regional Failure After Intensity Modulated Radiation Therapy or Passive Scattering Proton Therapy With Concurrent Chemotherapy for Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2019 01 01; 103(1):123-131.
    View in: PubMed
    Score: 0.041
  15. National Cancer Institute Workshop on Proton Therapy for Children: Considerations Regarding Brainstem Injury. Int J Radiat Oncol Biol Phys. 2018 05 01; 101(1):152-168.
    View in: PubMed
    Score: 0.040
  16. Erratum: "Monte Carlo simulations of 3 He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness" [Med. Phys. 43 (2), page range 761-776(2016)]. Med Phys. 2018 Mar; 45(3):1301.
    View in: PubMed
    Score: 0.039
  17. Erratum: "Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code" [Med. Phys. 42 (11), page range 6234-6247(2015)]. Med Phys. 2018 Mar; 45(3):1302.
    View in: PubMed
    Score: 0.039
  18. Differences in Normal Tissue Response in the Esophagus Between Proton and Photon Radiation Therapy for Non-Small Cell Lung Cancer Using In?Vivo Imaging Biomarkers. Int J Radiat Oncol Biol Phys. 2017 11 15; 99(4):1013-1020.
    View in: PubMed
    Score: 0.038
  19. Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol. 2016 12; 121(3):395-401.
    View in: PubMed
    Score: 0.036
  20. Monte Carlo simulations of ?He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness. Med Phys. 2016 Feb; 43(2):761-76.
    View in: PubMed
    Score: 0.034
  21. Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code. Med Phys. 2015 Nov; 42(11):6234-47.
    View in: PubMed
    Score: 0.033
  22. Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Sci Rep. 2015 May 18; 5:9850.
    View in: PubMed
    Score: 0.032
  23. An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle. Med Phys. 2010 Sep; 37(9):4960-70.
    View in: PubMed
    Score: 0.023
  24. The risk of developing a second cancer after receiving craniospinal proton irradiation. Phys Med Biol. 2009 Apr 21; 54(8):2277-91.
    View in: PubMed
    Score: 0.021
  25. Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams. Phys Med Biol. 2009 Apr 21; 54(8):2259-75.
    View in: PubMed
    Score: 0.021
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.