Connection

Co-Authors

This is a "connection" page, showing publications co-authored by RADHE MOHAN and UWE TITT.
Connection Strength

5.182
  1. Design and validation of a synchrotron proton beam line for FLASH radiotherapy preclinical research experiments. Med Phys. 2022 Jan; 49(1):497-509.
    View in: PubMed
    Score: 0.806
  2. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material. Med Phys. 2015 Nov; 42(11):6425-32.
    View in: PubMed
    Score: 0.528
  3. Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency. Phys Med Biol. 2010 Dec 07; 55(23):7097-106.
    View in: PubMed
    Score: 0.374
  4. Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions. Phys Med Biol. 2008 Aug 21; 53(16):4455-70.
    View in: PubMed
    Score: 0.319
  5. Technical note: Monte Carlo study of the mechanism of proton-boron fusion therapy. Med Phys. 2022 Jan; 49(1):579-582.
    View in: PubMed
    Score: 0.201
  6. Comparing 2 Monte Carlo Systems in Use for Proton Therapy Research. Int J Part Ther. 2019; 6(1):18-27.
    View in: PubMed
    Score: 0.168
  7. Fixed- versus Variable-RBE Computations for Intensity Modulated Proton Therapy. Adv Radiat Oncol. 2019 Jan-Mar; 4(1):156-167.
    View in: PubMed
    Score: 0.164
  8. RBE Model-Based Biological Dose Optimization for Proton Radiobiology Studies. Int J Part Ther. 2018; 5(1):160-171.
    View in: PubMed
    Score: 0.161
  9. Erratum: "Monte Carlo simulations of 3 He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness" [Med. Phys. 43 (2), page range 761-776(2016)]. Med Phys. 2018 Mar; 45(3):1301.
    View in: PubMed
    Score: 0.155
  10. Erratum: "Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code" [Med. Phys. 42 (11), page range 6234-6247(2015)]. Med Phys. 2018 Mar; 45(3):1302.
    View in: PubMed
    Score: 0.155
  11. Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy. Phys Med Biol. 2018 02 09; 63(4):045003.
    View in: PubMed
    Score: 0.154
  12. Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study. Phys Med Biol. 2016 Apr 07; 61(7):2633-45.
    View in: PubMed
    Score: 0.135
  13. Monte Carlo simulations of ?He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness. Med Phys. 2016 Feb; 43(2):761-76.
    View in: PubMed
    Score: 0.134
  14. Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code. Med Phys. 2015 Nov; 42(11):6234-47.
    View in: PubMed
    Score: 0.132
  15. LET dependence of the response of EBT2 films in proton dosimetry modeled as a bimolecular chemical reaction. Phys Med Biol. 2013 Dec 07; 58(23):8477-91.
    View in: PubMed
    Score: 0.115
  16. An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle. Med Phys. 2010 Sep; 37(9):4960-70.
    View in: PubMed
    Score: 0.092
  17. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams. Phys Med Biol. 2010 Feb 07; 55(3):711-21.
    View in: PubMed
    Score: 0.088
  18. Stereotactic radiotherapy for lung cancer using a flattening filter free Clinac. J Appl Clin Med Phys. 2009 Jan 27; 10(1):14-21.
    View in: PubMed
    Score: 0.083
  19. Density heterogeneities and the influence of multiple Coulomb and nuclear scatterings on the Bragg peak distal edge of proton therapy beams. Phys Med Biol. 2008 Sep 07; 53(17):4605-19.
    View in: PubMed
    Score: 0.080
  20. Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm. Phys Med Biol. 2007 Aug 07; 52(15):4569-84.
    View in: PubMed
    Score: 0.074
  21. Treatment-planning study of prostate cancer intensity-modulated radiotherapy with a Varian Clinac operated without a flattening filter. Int J Radiat Oncol Biol Phys. 2007 Aug 01; 68(5):1567-71.
    View in: PubMed
    Score: 0.074
  22. Monte Carlo study of backscatter in a flattening filter free clinical accelerator. Med Phys. 2006 Sep; 33(9):3270-3.
    View in: PubMed
    Score: 0.070
  23. A flattening filter free photon treatment concept evaluation with Monte Carlo. Med Phys. 2006 Jun; 33(6):1595-602.
    View in: PubMed
    Score: 0.069
  24. Properties of unflattened photon beams shaped by a multileaf collimator. Med Phys. 2006 Jun; 33(6):1738-46.
    View in: PubMed
    Score: 0.069
  25. MCNPX simulation of a multileaf collimator. Med Phys. 2006 Feb; 33(2):402-4.
    View in: PubMed
    Score: 0.067
  26. Defining the Optimal Radiation-induced Lymphopenia Metric to Discern Its Survival Impact in Esophageal Cancer. Int J Radiat Oncol Biol Phys. 2025 Jan 02.
    View in: PubMed
    Score: 0.062
  27. Discordance in acute gastrointestinal toxicity between synchrotron-based proton and linac-based electron ultra-high dose rate irradiation. bioRxiv. 2024 Sep 08.
    View in: PubMed
    Score: 0.061
  28. Optimization of FLASH proton beams using a track-repeating algorithm. Med Phys. 2022 Oct; 49(10):6684-6698.
    View in: PubMed
    Score: 0.053
  29. Roadmap: helium ion therapy. Phys Med Biol. 2022 08 05; 67(15).
    View in: PubMed
    Score: 0.053
  30. Adaptation and dosimetric commissioning of a synchrotron-based proton beamline for FLASH experiments. Phys Med Biol. 2022 08 05; 67(16).
    View in: PubMed
    Score: 0.053
  31. Mapping the Relative Biological Effectiveness of Proton, Helium and Carbon Ions with High-Throughput Techniques. Cancers (Basel). 2020 Dec 05; 12(12).
    View in: PubMed
    Score: 0.047
  32. Nonhomologous End Joining Is More Important Than Proton Linear Energy Transfer in Dictating Cell Death. Int J Radiat Oncol Biol Phys. 2019 12 01; 105(5):1119-1125.
    View in: PubMed
    Score: 0.043
  33. Intensity-Modulated Proton Therapy Adaptive Planning for Patients with Oropharyngeal Cancer. Int J Part Ther. 2017; 4(2):26-34.
    View in: PubMed
    Score: 0.038
  34. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams. Med Phys. 2017 Nov; 44(11):6061-6073.
    View in: PubMed
    Score: 0.038
  35. Differences in Normal Tissue Response in the Esophagus Between Proton and Photon Radiation Therapy for Non-Small Cell Lung Cancer Using In?Vivo Imaging Biomarkers. Int J Radiat Oncol Biol Phys. 2017 11 15; 99(4):1013-1020.
    View in: PubMed
    Score: 0.037
  36. Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol. 2016 12; 121(3):395-401.
    View in: PubMed
    Score: 0.035
  37. Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Sci Rep. 2015 May 18; 5:9850.
    View in: PubMed
    Score: 0.032
  38. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration. Phys Med Biol. 2012 Jul 07; 57(13):4095-115.
    View in: PubMed
    Score: 0.026
  39. A procedure to determine the planar integral spot dose values of proton pencil beam spots. Med Phys. 2012 Feb; 39(2):891-900.
    View in: PubMed
    Score: 0.025
  40. Experimental characterization of the low-dose envelope of spot scanning proton beams. Phys Med Biol. 2010 Jun 21; 55(12):3467-78.
    View in: PubMed
    Score: 0.023
  41. Energy spectra, sources, and shielding considerations for neutrons generated by a flattening filter-free Clinac. Med Phys. 2008 May; 35(5):1906-11.
    View in: PubMed
    Score: 0.020
  42. Reduced neutron production through use of a flattening-filter-free accelerator. Int J Radiat Oncol Biol Phys. 2007 Jul 15; 68(4):1260-4.
    View in: PubMed
    Score: 0.019
  43. A Monte Carlo model for calculating out-of-field dose from a varian 6 MV beam. Med Phys. 2006 Nov; 33(11):4405-13.
    View in: PubMed
    Score: 0.018
  44. Monte Carlo study of photon fields from a flattening filter-free clinical accelerator. Med Phys. 2006 Apr; 33(4):820-7.
    View in: PubMed
    Score: 0.017
  45. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys Med Biol. 2006 Apr 07; 51(7):1907-17.
    View in: PubMed
    Score: 0.017
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.