Connection

Co-Authors

This is a "connection" page, showing publications co-authored by RADHE MOHAN and MARY K MARTEL.
Connection Strength

0.415
  1. Analysis of radiation pneumonitis risk using a generalized Lyman model. Int J Radiat Oncol Biol Phys. 2008 Oct 01; 72(2):568-74.
    View in: PubMed
    Score: 0.081
  2. Differences in Normal Tissue Response in the Esophagus Between Proton and Photon Radiation Therapy for Non-Small Cell Lung Cancer Using In?Vivo Imaging Biomarkers. Int J Radiat Oncol Biol Phys. 2017 11 15; 99(4):1013-1020.
    View in: PubMed
    Score: 0.037
  3. (18)F-Fluorodeoxyglucose Positron Emission Tomography Can Quantify and Predict Esophageal Injury During Radiation Therapy. Int J Radiat Oncol Biol Phys. 2016 11 01; 96(3):670-8.
    View in: PubMed
    Score: 0.035
  4. Objectively Quantifying Radiation Esophagitis With Novel Computed Tomography-Based Metrics. Int J Radiat Oncol Biol Phys. 2016 Feb 01; 94(2):385-93.
    View in: PubMed
    Score: 0.033
  5. Is there an impact of heart exposure on the incidence of radiation pneumonitis? Analysis of data from a large clinical cohort. Acta Oncol. 2014 May; 53(5):590-6.
    View in: PubMed
    Score: 0.028
  6. Predictors of high-grade esophagitis after definitive three-dimensional conformal therapy, intensity-modulated radiation therapy, or proton beam therapy for non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2012 Nov 15; 84(4):1010-6.
    View in: PubMed
    Score: 0.026
  7. Predicting pneumonitis risk: a dosimetric alternative to mean lung dose. Int J Radiat Oncol Biol Phys. 2013 Feb 01; 85(2):522-7.
    View in: PubMed
    Score: 0.026
  8. Incorporating single-nucleotide polymorphisms into the Lyman model to improve prediction of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2013 Jan 01; 85(1):251-7.
    View in: PubMed
    Score: 0.026
  9. Long-term clinical outcome of intensity-modulated radiotherapy for inoperable non-small cell lung cancer: the MD Anderson experience. Int J Radiat Oncol Biol Phys. 2012 May 01; 83(1):332-9.
    View in: PubMed
    Score: 0.025
  10. Impact of toxicity grade and scoring system on the relationship between mean lung dose and risk of radiation pneumonitis in a large cohort of patients with non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2010 Jul 01; 77(3):691-8.
    View in: PubMed
    Score: 0.022
  11. Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2010 Mar 01; 76(3):775-81.
    View in: PubMed
    Score: 0.021
  12. Dose-volume thresholds and smoking status for the risk of treatment-related pneumonitis in inoperable non-small cell lung cancer treated with definitive radiotherapy. Radiother Oncol. 2009 Jun; 91(3):427-32.
    View in: PubMed
    Score: 0.020
  13. Proton radiotherapy for liver tumors: dosimetric advantages over photon plans. Med Dosim. 2008; 33(4):259-67.
    View in: PubMed
    Score: 0.019
  14. Measurements of radiation dose distributions for shielded cervical applicators. Int J Radiat Oncol Biol Phys. 1985 Apr; 11(4):861-8.
    View in: PubMed
    Score: 0.016
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.