Connection

ZHONGXING LIAO to Tumor Burden

This is a "connection" page, showing publications ZHONGXING LIAO has written about Tumor Burden.
Connection Strength

0.974
  1. Simultaneous Integrated Boost for Radiation Dose Escalation to the Gross Tumor Volume With Intensity Modulated (Photon) Radiation Therapy or Intensity Modulated Proton Therapy and Concurrent Chemotherapy for Stage II to III Non-Small Cell Lung Cancer: A Phase 1 Study. Int J Radiat Oncol Biol Phys. 2018 03 01; 100(3):730-737.
    View in: PubMed
    Score: 0.386
  2. Patterns of Local-Regional Failure After Intensity Modulated Radiation Therapy or Passive Scattering Proton Therapy With Concurrent Chemotherapy for Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys. 2019 01 01; 103(1):123-131.
    View in: PubMed
    Score: 0.102
  3. Radiation Dose, Local Disease Progression, and Overall Survival in Patients With Inoperable Non-Small Cell Lung Cancer After Concurrent Chemoradiation Therapy. Int J Radiat Oncol Biol Phys. 2018 02 01; 100(2):452-461.
    View in: PubMed
    Score: 0.096
  4. Prognostic impact of radiation therapy to the primary tumor in patients with non-small cell lung cancer and oligometastasis at diagnosis. Int J Radiat Oncol Biol Phys. 2012 Sep 01; 84(1):e61-7.
    View in: PubMed
    Score: 0.066
  5. Investigation of the relationship between gross tumor volume location and pneumonitis rates using a large clinical database of non-small-cell lung cancer patients. Int J Radiat Oncol Biol Phys. 2012 Apr 01; 82(5):1650-8.
    View in: PubMed
    Score: 0.061
  6. Esophageal cancer dose escalation using a simultaneous integrated boost technique. Int J Radiat Oncol Biol Phys. 2012 Jan 01; 82(1):468-74.
    View in: PubMed
    Score: 0.060
  7. Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2010 Mar 01; 76(3):775-81.
    View in: PubMed
    Score: 0.054
  8. NSCLC tumor shrinkage prediction using quantitative image features. Comput Med Imaging Graph. 2016 Apr; 49:29-36.
    View in: PubMed
    Score: 0.021
  9. Lung Size and the Risk of Radiation Pneumonitis. Int J Radiat Oncol Biol Phys. 2016 Feb 01; 94(2):377-84.
    View in: PubMed
    Score: 0.021
  10. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes. Int J Radiat Oncol Biol Phys. 2014 Aug 01; 89(5):1084-1091.
    View in: PubMed
    Score: 0.019
  11. Patient-specific quantification of respiratory motion-induced dose uncertainty for step-and-shoot IMRT of lung cancer. Med Phys. 2013 Dec; 40(12):121712.
    View in: PubMed
    Score: 0.018
  12. Effects of respiratory motion on passively scattered proton therapy versus intensity modulated photon therapy for stage III lung cancer: are proton plans more sensitive to breathing motion? Int J Radiat Oncol Biol Phys. 2013 Nov 01; 87(3):576-82.
    View in: PubMed
    Score: 0.018
  13. Feasibility of proton beam therapy for reirradiation of locoregionally recurrent non-small cell lung cancer. Radiother Oncol. 2013 Oct; 109(1):38-44.
    View in: PubMed
    Score: 0.018
  14. Automated volumetric modulated Arc therapy treatment planning for stage III lung cancer: how does it compare with intensity-modulated radio therapy? Int J Radiat Oncol Biol Phys. 2012 Sep 01; 84(1):e69-76.
    View in: PubMed
    Score: 0.017
  15. Failure patterns in patients with esophageal cancer treated with definitive chemoradiation. Cancer. 2012 May 15; 118(10):2632-40.
    View in: PubMed
    Score: 0.016
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.