Connection

Co-Authors

This is a "connection" page, showing publications co-authored by HAGOP M KANTARJIAN and SANAM LOGHAVI.
Connection Strength

6.267
  1. Outcome of Patients With Relapsed Acute Promyelocytic Leukemia. Clin Lymphoma Myeloma Leuk. 2024 Feb 03.
    View in: PubMed
    Score: 0.246
  2. Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation treated in the pre- and post-ponatinib era. Am J Hematol. 2023 10; 98(10):1619-1626.
    View in: PubMed
    Score: 0.237
  3. Ultrasensitive NGS MRD assessment in Ph+?ALL: Prognostic impact and correlation with RT-PCR for BCR::ABL1. Am J Hematol. 2023 08; 98(8):1196-1203.
    View in: PubMed
    Score: 0.234
  4. Results of salvage therapy with mini-hyper-CVD and inotuzumab ozogamicin with or without blinatumomab in pre-B acute lymphoblastic leukemia. J Hematol Oncol. 2023 05 02; 16(1):44.
    View in: PubMed
    Score: 0.234
  5. Prediction of survival with lower intensity therapy among older patients with acute myeloid leukemia. Cancer. 2023 04 01; 129(7):1017-1029.
    View in: PubMed
    Score: 0.230
  6. Frontline combination of ponatinib and hyper-CVAD in Philadelphia chromosome-positive acute lymphoblastic leukemia: 80-months follow-up results. Am J Hematol. 2023 03; 98(3):493-501.
    View in: PubMed
    Score: 0.229
  7. Venetoclax combined with FLAG-IDA induction and consolidation in newly diagnosed acute myeloid leukemia. Am J Hematol. 2022 08; 97(8):1035-1043.
    View in: PubMed
    Score: 0.219
  8. Prediction of survival with intensive chemotherapy in acute myeloid leukemia. Am J Hematol. 2022 07; 97(7):865-876.
    View in: PubMed
    Score: 0.217
  9. Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. J Clin Oncol. 2021 09 01; 39(25):2768-2778.
    View in: PubMed
    Score: 0.205
  10. Flow cytometric immunophenotypic alterations of persistent clonal haematopoiesis in remission bone marrows of patients with NPM1-mutated acute myeloid leukaemia. Br J Haematol. 2021 03; 192(6):1054-1063.
    View in: PubMed
    Score: 0.201
  11. Validation of the 2017 revision of the WHO chronic myelomonocytic leukemia categories. Blood Adv. 2018 08 14; 2(15):1807-1816.
    View in: PubMed
    Score: 0.169
  12. Chronic myelomonocytic leukemia masquerading as cutaneous indeterminate dendritic cell tumor: Expanding the spectrum of skin lesions in chronic myelomonocytic leukemia. J Cutan Pathol. 2017 Dec; 44(12):1075-1079.
    View in: PubMed
    Score: 0.159
  13. TP53 overexpression is an independent adverse prognostic factor in de novo myelodysplastic syndromes with fibrosis. Br J Haematol. 2015 Oct; 171(1):91-9.
    View in: PubMed
    Score: 0.136
  14. Insights from response to tyrosine kinase inhibitor therapy in a rare myeloproliferative neoplasm with CALR mutation and BCR-ABL1. Blood. 2015 May 21; 125(21):3360-3.
    View in: PubMed
    Score: 0.135
  15. Clinical features of de novo acute myeloid leukemia with concurrent DNMT3A, FLT3 and NPM1 mutations. J Hematol Oncol. 2014 Oct 04; 7:74.
    View in: PubMed
    Score: 0.129
  16. Influence of co-mutational patterns in disease phenotype and clinical outcomes of chronic myelomonocytic leukemia. Leukemia. 2024 Feb 28.
    View in: PubMed
    Score: 0.062
  17. Prognostic risk signature in patients with acute myeloid leukemia treated with hypomethylating agents and venetoclax. Blood Adv. 2024 Feb 27; 8(4):927-935.
    View in: PubMed
    Score: 0.062
  18. Targetable genetic abnormalities in patients with acute myeloblastic leukemia across age groups. Am J Hematol. 2024 Apr; 99(4):792-796.
    View in: PubMed
    Score: 0.062
  19. Phase 1/2 study of CPX-351 for patients with Int-2 or high risk International Prognostic Scoring System myelodysplastic syndromes and chronic myelomonocytic leukaemia after failure to hypomethylating agents. Br J Haematol. 2024 Mar; 204(3):898-909.
    View in: PubMed
    Score: 0.061
  20. Venetoclax abrogates the prognostic impact of splicing factor gene mutations in newly diagnosed acute myeloid leukemia. Blood. 2023 11 09; 142(19):1647-1657.
    View in: PubMed
    Score: 0.061
  21. Response patterns and impact of MRD in patients with IDH1/2-mutated AML treated with venetoclax and hypomethylating agents. Blood Cancer J. 2023 09 21; 13(1):148.
    View in: PubMed
    Score: 0.060
  22. Characteristics and clinical outcomes of patients with myeloid malignancies and DDX41 variants. Am J Hematol. 2023 Nov; 98(11):1780-1790.
    View in: PubMed
    Score: 0.060
  23. Phenotypic subtypes of leukaemic transformation in chronic myelomonocytic leukaemia. Br J Haematol. 2023 11; 203(4):581-592.
    View in: PubMed
    Score: 0.060
  24. Undetectable measurable residual disease is associated with improved outcomes in AML irrespective of treatment intensity. Blood Adv. 2023 07 11; 7(13):3284-3296.
    View in: PubMed
    Score: 0.059
  25. A Phase Ib/II Study of Ivosidenib with Venetoclax ? Azacitidine in IDH1-Mutated Myeloid Malignancies. Blood Cancer Discov. 2023 07 05; 4(4):276-293.
    View in: PubMed
    Score: 0.059
  26. A Phase I study of Milademetan (DS3032b) in combination with low dose cytarabine with or without venetoclax in acute myeloid leukemia: Clinical safety, efficacy, and correlative analysis. Blood Cancer J. 2023 06 29; 13(1):101.
    View in: PubMed
    Score: 0.059
  27. Targeted therapy with the mutant IDH2 inhibitor enasidenib for high-risk IDH2-mutant myelodysplastic syndrome. Blood Adv. 2023 06 13; 7(11):2378-2387.
    View in: PubMed
    Score: 0.059
  28. Clinical outcomes associated with NPM1 mutations in patients with relapsed or refractory AML. Blood Adv. 2023 03 28; 7(6):933-942.
    View in: PubMed
    Score: 0.058
  29. Causal linkage of presence of mutant NPM1 to efficacy of novel therapeutic agents against AML cells with mutant NPM1. Leukemia. 2023 06; 37(6):1336-1348.
    View in: PubMed
    Score: 0.058
  30. Differential prognostic impact of RUNX1 mutations according to frontline therapy in patients with acute myeloid leukemia. Am J Hematol. 2022 Dec; 97(12):1560-1567.
    View in: PubMed
    Score: 0.056
  31. Contemporary outcomes in IDH-mutated acute myeloid leukemia: The impact of co-occurring NPM1 mutations and venetoclax-based treatment. Am J Hematol. 2022 Nov; 97(11):1443-1452.
    View in: PubMed
    Score: 0.056
  32. Clinical outcomes and impact of therapeutic intervention in patients with acute myeloid leukemia who experience measurable residual disease?(MRD) recurrence following MRD-negative remission. Am J Hematol. 2022 Nov; 97(11):E408-E411.
    View in: PubMed
    Score: 0.056
  33. TP53 copy number and protein expression inform mutation status across risk categories in acute myeloid leukemia. Blood. 2022 07 07; 140(1):58-72.
    View in: PubMed
    Score: 0.055
  34. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic?Neoplasms. Leukemia. 2022 07; 36(7):1703-1719.
    View in: PubMed
    Score: 0.055
  35. Hypomethylating agent and venetoclax with FLT3 inhibitor "triplet" therapy in older/unfit patients with FLT3 mutated AML. Blood Cancer J. 2022 05 02; 12(5):77.
    View in: PubMed
    Score: 0.055
  36. Venetoclax combined with induction chemotherapy in patients with newly diagnosed acute myeloid leukaemia: a post-hoc, propensity score-matched, cohort study. Lancet Haematol. 2022 May; 9(5):e350-e360.
    View in: PubMed
    Score: 0.055
  37. Urgent cytoreduction for newly diagnosed acute myeloid leukemia patients allows acquisition of pretreatment genomic data and enrollment on investigational clinical trials. Am J Hematol. 2022 07; 97(7):885-894.
    View in: PubMed
    Score: 0.055
  38. Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer J. 2022 01 25; 12(1):10.
    View in: PubMed
    Score: 0.054
  39. Clonal dynamics and clinical implications of postremission clonal hematopoiesis in acute myeloid leukemia. Blood. 2021 11 04; 138(18):1733-1739.
    View in: PubMed
    Score: 0.053
  40. Value of measurable residual disease monitoring in patients with acute promyelocytic leukemia in the era of frontline 'chemotherapy-free' therapy. Leuk Lymphoma. 2022 03; 63(3):672-675.
    View in: PubMed
    Score: 0.053
  41. Prognostic impact of conventional cytogenetics in acute myeloid leukemia treated with venetoclax and decitabine. Leuk Lymphoma. 2021 12; 62(14):3501-3505.
    View in: PubMed
    Score: 0.052
  42. Development of TP53 mutations over the course of therapy for acute myeloid leukemia. Am J Hematol. 2021 11 01; 96(11):1420-1428.
    View in: PubMed
    Score: 0.052
  43. Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax. Cancer. 2021 10 15; 127(20):3772-3781.
    View in: PubMed
    Score: 0.052
  44. Author Correction: Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2021 May 10; 12(1):2823.
    View in: PubMed
    Score: 0.051
  45. FLT3 inhibitor based induction and allogeneic stem cell transplant in complete remission 1 improve outcomes in patients with newly diagnosed Acute Myeloid Leukemia with very low FLT3 allelic burden. Am J Hematol. 2021 08 01; 96(8):E275-E279.
    View in: PubMed
    Score: 0.051
  46. Clinicopathologic correlates and natural history of atypical chronic myeloid leukemia. Cancer. 2021 09 01; 127(17):3113-3124.
    View in: PubMed
    Score: 0.051
  47. Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Adv. 2021 04 27; 5(8):2173-2183.
    View in: PubMed
    Score: 0.051
  48. Nivolumab maintenance in high-risk acute myeloid leukemia patients: a single-arm, open-label, phase II study. Blood Cancer J. 2021 03 17; 11(3):60.
    View in: PubMed
    Score: 0.050
  49. Correction to: Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol. 2021 Feb 23; 14(1):34.
    View in: PubMed
    Score: 0.050
  50. Decitabine and venetoclax for IDH1/2-mutated acute myeloid leukemia. Am J Hematol. 2021 05 01; 96(5):E154-E157.
    View in: PubMed
    Score: 0.050
  51. Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer J. 2021 02 01; 11(2):25.
    View in: PubMed
    Score: 0.050
  52. Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 inhibitors. Blood Cancer Discov. 2021 03; 2(2):125-134.
    View in: PubMed
    Score: 0.049
  53. Clinical outcomes and influence of mutation clonal dominance in oligomonocytic and classical chronic myelomonocytic leukemia. Am J Hematol. 2021 02 01; 96(2):E50-E53.
    View in: PubMed
    Score: 0.049
  54. Publisher Correction: Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020 Nov 19; 11(1):5996.
    View in: PubMed
    Score: 0.049
  55. Clinical characteristics and outcomes in patients with acute myeloid leukemia with concurrent FLT3-ITD and IDH mutations. Cancer. 2021 02 01; 127(3):381-390.
    View in: PubMed
    Score: 0.049
  56. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat Commun. 2020 10 21; 11(1):5327.
    View in: PubMed
    Score: 0.049
  57. Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol. 2020 10 08; 13(1):132.
    View in: PubMed
    Score: 0.049
  58. Clonal evolution and treatment outcomes in hematopoietic neoplasms arising in patients with germline RUNX1 mutations. Am J Hematol. 2020 11; 95(11):E313-E315.
    View in: PubMed
    Score: 0.049
  59. Targeted next-generation sequencing of circulating cell-free DNA vs bone marrow in patients with acute myeloid leukemia. Blood Adv. 2020 04 28; 4(8):1670-1677.
    View in: PubMed
    Score: 0.047
  60. Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens. Blood Adv. 2020 04 14; 4(7):1311-1320.
    View in: PubMed
    Score: 0.047
  61. Clinico-pathologic characteristics and outcomes of the World Health Organization (WHO) provisional entity de novo acute myeloid leukemia with mutated RUNX1. Mod Pathol. 2020 09; 33(9):1678-1689.
    View in: PubMed
    Score: 0.047
  62. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020 03 12; 135(11):791-803.
    View in: PubMed
    Score: 0.047
  63. t(11;16)(q23;p13)/KMT2A-CREBBP in hematologic malignancies: presumptive evidence of myelodysplasia or therapy-related neoplasm? Ann Hematol. 2020 Mar; 99(3):487-500.
    View in: PubMed
    Score: 0.047
  64. The early achievement of measurable residual disease negativity in the treatment of adults with Philadelphia-negative B-cell acute lymphoblastic leukemia is a strong predictor for survival. Am J Hematol. 2020 02; 95(2):144-150.
    View in: PubMed
    Score: 0.046
  65. Sorafenib plus intensive chemotherapy improves survival in patients with newly diagnosed, FLT3-internal tandem duplication mutation-positive acute myeloid leukemia. Cancer. 2019 Nov 01; 125(21):3755-3766.
    View in: PubMed
    Score: 0.045
  66. Prognostic significance of baseline FLT3-ITD mutant allele level in acute myeloid leukemia treated with intensive chemotherapy with/without sorafenib. Am J Hematol. 2019 09; 94(9):984-991.
    View in: PubMed
    Score: 0.045
  67. Early T precursor acute lymphoblastic leukaemia/lymphoma shows differential immunophenotypic characteristics including frequent CD33 expression and in vitro response to targeted CD33 therapy. Br J Haematol. 2019 08; 186(4):538-548.
    View in: PubMed
    Score: 0.044
  68. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am J Hematol. 2019 07; 94(7):757-766.
    View in: PubMed
    Score: 0.044
  69. NPM1 mutant variant allele frequency correlates with leukemia burden but does not provide prognostic information in NPM1-mutated acute myeloid leukemia. Am J Hematol. 2019 06; 94(6):E158-E160.
    View in: PubMed
    Score: 0.044
  70. Late relapse in acute myeloid leukemia (AML): clonal evolution or therapy-related leukemia? Blood Cancer J. 2019 01 16; 9(2):7.
    View in: PubMed
    Score: 0.043
  71. Treatment with a 5-day versus a 10-day schedule of decitabine in older patients with newly diagnosed acute myeloid leukaemia: a randomised phase 2 trial. Lancet Haematol. 2019 Jan; 6(1):e29-e37.
    View in: PubMed
    Score: 0.043
  72. P53 protein overexpression in de novo acute myeloid leukemia patients with normal diploid karyotype correlates with FLT3 internal tandem duplication and worse relapse-free survival. Am J Hematol. 2018 11; 93(11):1376-1383.
    View in: PubMed
    Score: 0.042
  73. Mutational landscape of myelodysplastic/myeloproliferative neoplasm-unclassifiable. Blood. 2018 11 08; 132(19):2100-2103.
    View in: PubMed
    Score: 0.042
  74. Persistent IDH1/2 mutations in remission can predict relapse in patients with acute myeloid leukemia. Haematologica. 2019 02; 104(2):305-311.
    View in: PubMed
    Score: 0.042
  75. Chronic Myelomonocytic Leukemia With Fibrosis Is a Distinct Disease Subset With Myeloproliferative Features and Frequent JAK2 p.V617F Mutations. Am J Surg Pathol. 2018 06; 42(6):799-806.
    View in: PubMed
    Score: 0.042
  76. MYC protein expression is an important prognostic factor in acute myeloid leukemia. Leuk Lymphoma. 2019 01; 60(1):37-48.
    View in: PubMed
    Score: 0.041
  77. Clinical and prognostic significance of e1a2 BCR-ABL1 transcript subtype in chronic myeloid leukemia. Blood Cancer J. 2017 07 14; 7(7):e583.
    View in: PubMed
    Score: 0.039
  78. Myeloid neoplasms with concurrent BCR-ABL1 and CBFB rearrangements: A series of 10 cases of a clinically aggressive neoplasm. Am J Hematol. 2017 Jun; 92(6):520-528.
    View in: PubMed
    Score: 0.038
  79. Acute Myeloid Leukemia With t(v;5q33) Is Associated With Poor Overall Survival and Often Lacks Myelodysplastic Features. Clin Lymphoma Myeloma Leuk. 2015 Jun; 15 Suppl:S85-90.
    View in: PubMed
    Score: 0.034
  80. Plasma circulating-microRNA profiles are useful for assessing prognosis in patients with cytogenetically normal myelodysplastic syndromes. Mod Pathol. 2015 Mar; 28(3):373-82.
    View in: PubMed
    Score: 0.032
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.