Connection

GUILLERMINA LOZANO to Mice

This is a "connection" page, showing publications GUILLERMINA LOZANO has written about Mice.
Connection Strength

2.690
  1. 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer. 2009 11; 9(11):831-41.
    View in: PubMed
    Score: 0.077
  2. Crippling p53 activities via knock-in mutations in mouse models. Oncogene. 2007 Apr 02; 26(15):2177-84.
    View in: PubMed
    Score: 0.065
  3. p53R172H and p53R245W Hotspot Mutations Drive Distinct Transcriptomes in Mouse Mammary Tumors Through a Convergent Transcriptional Mediator. Cancer Res Commun. 2024 08 01; 4(8):1991-2007.
    View in: PubMed
    Score: 0.054
  4. Mutant p53 protects triple-negative breast adenocarcinomas from ferroptosis in vivo. Sci Adv. 2024 Feb 16; 10(7):eadk1835.
    View in: PubMed
    Score: 0.052
  5. p53R245W Mutation Fuels Cancer Initiation and Metastases in NASH-driven Liver Tumorigenesis. Cancer Res Commun. 2023 12 29; 3(12):2640-2652.
    View in: PubMed
    Score: 0.052
  6. Triple-negative breast tumors are dependent on mutant p53 for growth and survival. Proc Natl Acad Sci U S A. 2023 08 22; 120(34):e2308807120.
    View in: PubMed
    Score: 0.050
  7. Unique Transcriptional Profiles Underlie Osteosarcomagenesis Driven by Different p53 Mutants. Cancer Res. 2023 07 14; 83(14):2297-2311.
    View in: PubMed
    Score: 0.050
  8. Dimeric p53 Mutant Elicits Unique Tumor-Suppressive Activities through an Altered Metabolic Program. Cancer Discov. 2023 05 04; 13(5):1230-1249.
    View in: PubMed
    Score: 0.049
  9. Omics analyses of a somatic Trp53R245W/+ breast cancer model identify cooperating driver events activating PI3K/AKT/mTOR signaling. Proc Natl Acad Sci U S A. 2022 Nov 08; 119(45):e2210618119.
    View in: PubMed
    Score: 0.048
  10. p53 Activation Paradoxically Causes Liver Cancer. Cancer Res. 2022 08 16; 82(16):2824-2825.
    View in: PubMed
    Score: 0.047
  11. Is loss of p53 a driver of ductal carcinoma in situ progression? Br J Cancer. 2022 11; 127(10):1744-1754.
    View in: PubMed
    Score: 0.047
  12. Differential Gain-of-Function Activity of Three p53 Hotspot Mutants In Vivo. Cancer Res. 2022 05 16; 82(10):1926-1936.
    View in: PubMed
    Score: 0.046
  13. Alterations of the Mdm2 C-Terminus Differentially Impact Its Function In Vivo. Cancer Res. 2022 04 01; 82(7):1313-1320.
    View in: PubMed
    Score: 0.046
  14. Oncogenic KRAS Recruits an Expansive Transcriptional Network through Mutant p53 to Drive Pancreatic Cancer Metastasis. Cancer Discov. 2021 08; 11(8):2094-2111.
    View in: PubMed
    Score: 0.043
  15. The Common Germline TP53-R337H Mutation Is Hypomorphic and Confers Incomplete Penetrance and Late Tumor Onset in a Mouse Model. Cancer Res. 2021 05 01; 81(9):2442-2456.
    View in: PubMed
    Score: 0.042
  16. p53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo. Proc Natl Acad Sci U S A. 2020 09 22; 117(38):23663-23673.
    View in: PubMed
    Score: 0.041
  17. Daxx maintains endogenous retroviral silencing and restricts cellular plasticity in vivo. Sci Adv. 2020 08; 6(32):eaba8415.
    View in: PubMed
    Score: 0.041
  18. Men1 maintains exocrine pancreas homeostasis in response to inflammation and oncogenic stress. Proc Natl Acad Sci U S A. 2020 03 24; 117(12):6622-6629.
    View in: PubMed
    Score: 0.040
  19. Transient enhancement of p53 activity protects from radiation-induced gastrointestinal toxicity. Proc Natl Acad Sci U S A. 2019 08 27; 116(35):17429-17437.
    View in: PubMed
    Score: 0.038
  20. Dicer1 Phosphomimetic Promotes Tumor Progression and Dissemination. Cancer Res. 2019 05 15; 79(10):2662-2668.
    View in: PubMed
    Score: 0.037
  21. One step at a time. Mol Biol Cell. 2018 11 01; 29(22):2614-2615.
    View in: PubMed
    Score: 0.036
  22. CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo. Cell Death Dis. 2018 Oct 27; 9(11):1099.
    View in: PubMed
    Score: 0.036
  23. Daxx Functions Are p53-Independent In Vivo. Mol Cancer Res. 2018 10; 16(10):1523-1529.
    View in: PubMed
    Score: 0.035
  24. Synergistic and additive effect of retinoic acid in circumventing resistance to p53 restoration. Proc Natl Acad Sci U S A. 2018 02 27; 115(9):2198-2203.
    View in: PubMed
    Score: 0.034
  25. Contrasting effects of an Mdm2 functional polymorphism on tumor phenotypes. Oncogene. 2018 01 18; 37(3):332-340.
    View in: PubMed
    Score: 0.033
  26. Integrative genome analysis of somatic p53 mutant osteosarcomas identifies Ets2-dependent regulation of small nucleolar RNAs by mutant p53 protein. Genes Dev. 2017 09 15; 31(18):1847-1857.
    View in: PubMed
    Score: 0.033
  27. Tumorigenesis promotes Mdm4-S overexpression. Oncotarget. 2017 Apr 18; 8(16):25837-25847.
    View in: PubMed
    Score: 0.033
  28. The p53 inhibitor Mdm4 cooperates with multiple genetic lesions in tumourigenesis. J Pathol. 2017 03; 241(4):501-510.
    View in: PubMed
    Score: 0.032
  29. Attenuating the p53 Pathway in Human Cancers: Many Means to the Same End. Cold Spring Harb Perspect Med. 2016 08 01; 6(8).
    View in: PubMed
    Score: 0.031
  30. Distinct downstream targets manifest p53-dependent pathologies in mice. Oncogene. 2016 11 03; 35(44):5713-5721.
    View in: PubMed
    Score: 0.030
  31. p53 Activity Dominates That of p73 upon Mdm4 Loss in Development and Tumorigenesis. Mol Cancer Res. 2016 Jan; 14(1):56-65.
    View in: PubMed
    Score: 0.029
  32. Mdm2 overexpression and p73 loss exacerbate genomic instability and dampen apoptosis, resulting in B-cell lymphoma. Oncogene. 2016 Jan 21; 35(3):358-65.
    View in: PubMed
    Score: 0.028
  33. Pla2g16 phospholipase mediates gain-of-function activities of mutant p53. Proc Natl Acad Sci U S A. 2014 Jul 29; 111(30):11145-50.
    View in: PubMed
    Score: 0.027
  34. Tissue-specific and age-dependent effects of global Mdm2 loss. J Pathol. 2014 Aug; 233(4):380-91.
    View in: PubMed
    Score: 0.027
  35. Dissecting the p53-Mdm2 feedback loop in vivo: uncoupling the role in p53 stability and activity. Oncotarget. 2014 Mar 15; 5(5):1149-56.
    View in: PubMed
    Score: 0.026
  36. The Mdm network and its regulation of p53 activities: a rheostat of cancer risk. Hum Mutat. 2014 Jun; 35(6):728-37.
    View in: PubMed
    Score: 0.026
  37. Therapeutic efficacy of p53 restoration in Mdm2-overexpressing tumors. Mol Cancer Res. 2014 Jun; 12(6):901-11.
    View in: PubMed
    Score: 0.026
  38. The mutant p53 mouse as a pre-clinical model. Oncogene. 2013 Sep 12; 32(37):4325-30.
    View in: PubMed
    Score: 0.024
  39. The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans. Blood. 2012 Dec 20; 120(26):5118-27.
    View in: PubMed
    Score: 0.024
  40. Multiple stress signals activate mutant p53 in vivo. Cancer Res. 2011 Dec 01; 71(23):7168-75.
    View in: PubMed
    Score: 0.022
  41. The ups and downs of p53 regulation in hematopoietic stem cells. Cell Cycle. 2011 Oct 01; 10(19):3257-62.
    View in: PubMed
    Score: 0.022
  42. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity. Cell Stem Cell. 2010 Nov 05; 7(5):606-17.
    View in: PubMed
    Score: 0.021
  43. Regulation of tissue- and stimulus-specific cell fate decisions by p53 in vivo. J Pathol. 2011 Jan; 223(2):127-36.
    View in: PubMed
    Score: 0.021
  44. You can win by losing: p53 mutations in rhabdomyosarcomas. J Pathol. 2010 Oct; 222(2):124-8.
    View in: PubMed
    Score: 0.021
  45. Spontaneous tumorigenesis in mice overexpressing the p53-negative regulator Mdm4. Cancer Res. 2010 Sep 15; 70(18):7148-54.
    View in: PubMed
    Score: 0.021
  46. Mouse models of p53 functions. Cold Spring Harb Perspect Biol. 2010 Apr; 2(4):a001115.
    View in: PubMed
    Score: 0.020
  47. Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice. Carcinogenesis. 2009 Oct; 30(10):1789-95.
    View in: PubMed
    Score: 0.019
  48. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities. Differentiation. 2009 Jun; 77(5):442-9.
    View in: PubMed
    Score: 0.019
  49. EWS-FLI1 induces developmental abnormalities and accelerates sarcoma formation in a transgenic mouse model. Cancer Res. 2008 Nov 01; 68(21):8968-75.
    View in: PubMed
    Score: 0.018
  50. The intestinal epithelium compensates for p53-mediated cell death and guarantees organismal survival. Cell Death Differ. 2008 Nov; 15(11):1772-81.
    View in: PubMed
    Score: 0.018
  51. Mdm2 and Mdm4 loss regulates distinct p53 activities. Mol Cancer Res. 2008 Jun; 6(6):947-54.
    View in: PubMed
    Score: 0.018
  52. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev. 2008 May 15; 22(10):1337-44.
    View in: PubMed
    Score: 0.018
  53. The p53-Mdm2 network in progenitor cell expansion during mouse postnatal development. J Pathol. 2007 Dec; 213(4):360-8.
    View in: PubMed
    Score: 0.017
  54. Mtbp haploinsufficiency in mice increases tumor metastasis. Oncogene. 2008 Mar 20; 27(13):1813-20.
    View in: PubMed
    Score: 0.017
  55. Mammary tumor modifiers in BALB/cJ mice heterozygous for p53. Mamm Genome. 2007 May; 18(5):300-9.
    View in: PubMed
    Score: 0.016
  56. Loss of Mdm4 results in p53-dependent dilated cardiomyopathy. Circulation. 2007 Jun 12; 115(23):2925-30.
    View in: PubMed
    Score: 0.016
  57. Haploinsufficiency of Mdm2 and Mdm4 in tumorigenesis and development. Mol Cell Biol. 2007 Aug; 27(15):5479-85.
    View in: PubMed
    Score: 0.016
  58. A genetic mouse model for metastatic lung cancer with gender differences in survival. Oncogene. 2007 Oct 18; 26(48):6896-904.
    View in: PubMed
    Score: 0.016
  59. New mouse models of cancer: single-cell knockouts. Proc Natl Acad Sci U S A. 2007 Mar 13; 104(11):4245-6.
    View in: PubMed
    Score: 0.016
  60. The oncogenic roles of p53 mutants in mouse models. Curr Opin Genet Dev. 2007 Feb; 17(1):66-70.
    View in: PubMed
    Score: 0.016
  61. p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci U S A. 2006 Dec 26; 103(52):19842-7.
    View in: PubMed
    Score: 0.016
  62. Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res. 2006 Oct 01; 66(19):9502-8.
    View in: PubMed
    Score: 0.016
  63. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ. 2006 Jun; 13(6):927-34.
    View in: PubMed
    Score: 0.015
  64. Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development. Proc Natl Acad Sci U S A. 2006 Feb 28; 103(9):3226-31.
    View in: PubMed
    Score: 0.015
  65. Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4. Mol Cell Biol. 2006 Jan; 26(1):192-8.
    View in: PubMed
    Score: 0.015
  66. p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun. 2005 Jun 10; 331(3):834-42.
    View in: PubMed
    Score: 0.014
  67. What have animal models taught us about the p53 pathway? J Pathol. 2005 Jan; 205(2):206-20.
    View in: PubMed
    Score: 0.014
  68. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004 Dec 17; 119(6):861-72.
    View in: PubMed
    Score: 0.014
  69. Mutation at p53 serine 389 does not rescue the embryonic lethality in mdm2 or mdm4 null mice. Oncogene. 2004 Oct 07; 23(46):7644-50.
    View in: PubMed
    Score: 0.014
  70. Pancreatic Epithelial IL17/IL17RA Signaling Drives B7-H4 Expression to Promote Tumorigenesis. Cancer Immunol Res. 2024 Sep 03; 12(9):1170-1183.
    View in: PubMed
    Score: 0.014
  71. Inhibition of ULK1/2 and KRASG12C controls tumor growth in preclinical models of lung cancer. Elife. 2024 Aug 30; 13.
    View in: PubMed
    Score: 0.014
  72. A novel genetic modifier of p53, mop1, results in embryonic lethality. Mamm Genome. 2004 Jun; 15(6):415-23.
    View in: PubMed
    Score: 0.013
  73. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet. 2004 Jan; 36(1):63-8.
    View in: PubMed
    Score: 0.013
  74. Switching mechanisms of cell death in mdm2- and mdm4-null mice by deletion of p53 downstream targets. Cancer Res. 2003 Dec 15; 63(24):8664-9.
    View in: PubMed
    Score: 0.013
  75. The histone chaperone function of Daxx is dispensable for embryonic development. Cell Death Dis. 2023 08 26; 14(8):565.
    View in: PubMed
    Score: 0.013
  76. Disrupting TP53 in mouse models of human cancers. Hum Mutat. 2003 Mar; 21(3):321-6.
    View in: PubMed
    Score: 0.012
  77. EGFR suppresses p53 function by promoting p53 binding to DNA-PKcs: a noncanonical regulatory axis between EGFR and wild-type p53 in glioblastoma. Neuro Oncol. 2022 10 03; 24(10):1712-1725.
    View in: PubMed
    Score: 0.012
  78. Modelling aggressive prostate cancers of young men in immune-competent mice, driven by isogenic Trp53 alterations and Pten loss. Cell Death Dis. 2022 09 08; 13(9):777.
    View in: PubMed
    Score: 0.012
  79. Context matters - Daxx and Atrx are not robust tumor suppressors in the murine endocrine pancreas. Dis Model Mech. 2022 08 01; 15(8).
    View in: PubMed
    Score: 0.012
  80. Loss of p19ARF enhances the defects of Mdm2 overexpression in the mammary gland. Oncogene. 2002 May 16; 21(22):3525-31.
    View in: PubMed
    Score: 0.012
  81. Conditional allele of mdm2 which encodes a p53 inhibitor. Genesis. 2002 Feb; 32(2):145-7.
    View in: PubMed
    Score: 0.011
  82. Mammary-specific expression of Trim24 establishes a mouse model of human metaplastic breast cancer. Nat Commun. 2021 09 10; 12(1):5389.
    View in: PubMed
    Score: 0.011
  83. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nat Genet. 2001 Sep; 29(1):92-5.
    View in: PubMed
    Score: 0.011
  84. An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2. Oncogene. 2001 Jul 05; 20(30):4041-9.
    View in: PubMed
    Score: 0.011
  85. Organization, expression, and localization of the murine mdmx gene and pseudogene. Gene. 2001 May 30; 270(1-2):277-83.
    View in: PubMed
    Score: 0.011
  86. Wnt/?-catenin-mediated p53 suppression is indispensable for osteogenesis of mesenchymal progenitor cells. Cell Death Dis. 2021 05 21; 12(6):521.
    View in: PubMed
    Score: 0.011
  87. MDMX acts as a pervasive preleukemic-to-acute myeloid leukemia transition mechanism. Cancer Cell. 2021 04 12; 39(4):529-547.e7.
    View in: PubMed
    Score: 0.011
  88. High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci U S A. 2000 Apr 11; 97(8):4174-9.
    View in: PubMed
    Score: 0.010
  89. The loss of mdm2 induces p53-mediated apoptosis. Oncogene. 2000 Mar 23; 19(13):1691-7.
    View in: PubMed
    Score: 0.010
  90. Loss of one but not two mdm2 null alleles alters the tumour spectrum in p53 null mice. J Pathol. 1999 Jul; 188(3):322-8.
    View in: PubMed
    Score: 0.009
  91. Overproduction of MDM2 in vivo disrupts S phase independent of E2F1. Cell Growth Differ. 1999 Mar; 10(3):147-54.
    View in: PubMed
    Score: 0.009
  92. Constitutive Dicer1 phosphorylation accelerates metabolism and aging in vivo. Proc Natl Acad Sci U S A. 2019 01 15; 116(3):960-969.
    View in: PubMed
    Score: 0.009
  93. Immune Cell Production of Interleukin 17 Induces Stem Cell Features of Pancreatic Intraepithelial Neoplasia Cells. Gastroenterology. 2018 07; 155(1):210-223.e3.
    View in: PubMed
    Score: 0.009
  94. A spontaneous model of spondyloarthropathies that develops bone loss and pathological bone formation: A process regulated by IL27RA-/- and mutant-p53. PLoS One. 2018; 13(3):e0193485.
    View in: PubMed
    Score: 0.009
  95. Mouse models dissect the role of p53 in cancer and development. Semin Cancer Biol. 1998; 8(5):337-44.
    View in: PubMed
    Score: 0.009
  96. The p53 targets mdm2 and Fas are not required as mediators of apoptosis in vivo. Oncogene. 1997 Sep 25; 15(13):1527-34.
    View in: PubMed
    Score: 0.008
  97. Deletion of p21 cannot substitute for p53 loss in rescue of mdm2 null lethality. Nat Genet. 1997 Aug; 16(4):336-7.
    View in: PubMed
    Score: 0.008
  98. Mutation of phosphoserine 389 affects p53 function in vivo. J Biol Chem. 1996 Nov 15; 271(46):29380-5.
    View in: PubMed
    Score: 0.008
  99. The organization and expression of the mdm2 gene. Genomics. 1996 May 01; 33(3):352-7.
    View in: PubMed
    Score: 0.008
  100. Lack of Immunomodulatory Interleukin-27 Enhances Oncogenic Properties of Mutant p53 In Vivo. Clin Cancer Res. 2016 08 01; 22(15):3876-83.
    View in: PubMed
    Score: 0.008
  101. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53. Mol Cell. 2016 Jan 07; 61(1):68-83.
    View in: PubMed
    Score: 0.007
  102. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995 Nov 09; 378(6553):203-6.
    View in: PubMed
    Score: 0.007
  103. Cyclin E restores p53 activity in contact-inhibited cells. Mol Cell Biol. 1995 Jul; 15(7):3926-33.
    View in: PubMed
    Score: 0.007
  104. TRIM24 suppresses development of spontaneous hepatic lipid accumulation and hepatocellular carcinoma in mice. J Hepatol. 2015 Feb; 62(2):371-9.
    View in: PubMed
    Score: 0.007
  105. Loss of the novel tumour suppressor and polarity gene Trim62 (Dear1) synergizes with oncogenic Ras in invasive lung cancer. J Pathol. 2014 Sep; 234(1):108-19.
    View in: PubMed
    Score: 0.007
  106. Inhibition of endothelial p53 improves metabolic abnormalities related to dietary obesity. Cell Rep. 2014 Jun 12; 7(5):1691-1703.
    View in: PubMed
    Score: 0.007
  107. USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nat Immunol. 2014 Jun; 15(6):562-70.
    View in: PubMed
    Score: 0.007
  108. ASPP2 suppresses squamous cell carcinoma via RelA/p65-mediated repression of p63. Proc Natl Acad Sci U S A. 2013 Oct 29; 110(44):17969-74.
    View in: PubMed
    Score: 0.006
  109. The p53-Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes Dev. 2013 Sep 01; 27(17):1857-67.
    View in: PubMed
    Score: 0.006
  110. DEAR1 is a chromosome 1p35 tumor suppressor and master regulator of TGF-?-driven epithelial-mesenchymal transition. Cancer Discov. 2013 Oct; 3(10):1172-89.
    View in: PubMed
    Score: 0.006
  111. The tumor suppressor p53 regulates its own transcription. Mol Cell Biol. 1993 Jun; 13(6):3415-23.
    View in: PubMed
    Score: 0.006
  112. Mutant p53 prolongs NF-?B activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell. 2013 May 13; 23(5):634-46.
    View in: PubMed
    Score: 0.006
  113. Loss of PML cooperates with mutant p53 to drive more aggressive cancers in a gender-dependent manner. Cell Cycle. 2013 Jun 01; 12(11):1722-31.
    View in: PubMed
    Score: 0.006
  114. Grail as a molecular determinant for the functions of the tumor suppressor p53 in tumorigenesis. Cell Death Differ. 2013 May; 20(5):732-43.
    View in: PubMed
    Score: 0.006
  115. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell. 2012 Jun 12; 21(6):793-806.
    View in: PubMed
    Score: 0.006
  116. Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation. Cell Death Differ. 2012 Aug; 19(8):1381-9.
    View in: PubMed
    Score: 0.006
  117. Analysis of p53 mutants for transcriptional activity. Mol Cell Biol. 1991 Dec; 11(12):6067-74.
    View in: PubMed
    Score: 0.006
  118. Mutant p53 protein, master regulator of human malignancies: a report on the Fifth Mutant p53 Workshop. Cell Death Differ. 2012 Jan; 19(1):180-3.
    View in: PubMed
    Score: 0.006
  119. Mutant p53 disrupts role of ShcA protein in balancing Smad protein-dependent and -independent signaling activity of transforming growth factor-? (TGF-?). J Biol Chem. 2011 Dec 23; 286(51):44023-44034.
    View in: PubMed
    Score: 0.006
  120. An intron binding protein is required for transformation ability of p53. Nucleic Acids Res. 1991 Sep 11; 19(17):4747-52.
    View in: PubMed
    Score: 0.006
  121. Coexpression of normally incompatible developmental pathways in retinoblastoma genesis. Cancer Cell. 2011 Aug 16; 20(2):260-75.
    View in: PubMed
    Score: 0.005
  122. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell. 2011 Jul 12; 20(1):79-91.
    View in: PubMed
    Score: 0.005
  123. Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc Natl Acad Sci U S A. 2011 Jul 19; 108(29):11995-2000.
    View in: PubMed
    Score: 0.005
  124. Rpl27a mutation in the sooty foot ataxia mouse phenocopies high p53 mouse models. J Pathol. 2011 Aug; 224(4):540-52.
    View in: PubMed
    Score: 0.005
  125. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. J Clin Invest. 2011 Mar; 121(3):893-904.
    View in: PubMed
    Score: 0.005
  126. Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers. J Clin Invest. 2011 Mar; 121(3):851-65.
    View in: PubMed
    Score: 0.005
  127. Tissue-specific expression of p53 in transgenic mice is regulated by intron sequences. Mol Carcinog. 1991; 4(1):3-9.
    View in: PubMed
    Score: 0.005
  128. p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation. Pigment Cell Melanoma Res. 2010 Dec; 23(6):781-94.
    View in: PubMed
    Score: 0.005
  129. p53 status in stromal fibroblasts modulates tumor growth in an SDF1-dependent manner. Cancer Res. 2010 Dec 01; 70(23):9650-8.
    View in: PubMed
    Score: 0.005
  130. A high-frequency regulatory polymorphism in the p53 pathway accelerates tumor development. Cancer Cell. 2010 Sep 14; 18(3):220-30.
    View in: PubMed
    Score: 0.005
  131. Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene. 2010 Nov 18; 29(46):6125-37.
    View in: PubMed
    Score: 0.005
  132. The E3 ubiquitin ligase GRAIL regulates T cell tolerance and regulatory T cell function by mediating T cell receptor-CD3 degradation. Immunity. 2010 May 28; 32(5):670-80.
    View in: PubMed
    Score: 0.005
  133. A deficiency in Mdm2 binding protein inhibits Myc-induced B-cell proliferation and lymphomagenesis. Oncogene. 2010 Jun 03; 29(22):3287-96.
    View in: PubMed
    Score: 0.005
  134. Transcriptional mechanisms controlling types I and III collagen genes. Ann N Y Acad Sci. 1990; 580:88-96.
    View in: PubMed
    Score: 0.005
  135. p53-dependent senescence delays Emu-myc-induced B-cell lymphomagenesis. Oncogene. 2010 Mar 04; 29(9):1260-9.
    View in: PubMed
    Score: 0.005
  136. E2F3 is a mediator of DNA damage-induced apoptosis. Mol Cell Biol. 2010 Jan; 30(2):524-36.
    View in: PubMed
    Score: 0.005
  137. Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma. PLoS One. 2009; 4(4):e5401.
    View in: PubMed
    Score: 0.005
  138. p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS One. 2008; 3(11):e3707.
    View in: PubMed
    Score: 0.005
  139. An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. J Clin Invest. 2007 Jul; 117(7):1893-901.
    View in: PubMed
    Score: 0.004
  140. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep. 2007 May; 8(5):497-503.
    View in: PubMed
    Score: 0.004
  141. Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos. Mol Cell Biol. 2007 May; 27(9):3405-16.
    View in: PubMed
    Score: 0.004
  142. Distinct roles of Mdm2 and Mdm4 in red cell production. Blood. 2007 Mar 15; 109(6):2630-3.
    View in: PubMed
    Score: 0.004
  143. Genetic mapping of a putative tumor suppressor locus that influences tumorigenesis and metastasis in mice. Genes Chromosomes Cancer. 2006 Jul; 45(7):668-75.
    View in: PubMed
    Score: 0.004
  144. MDM2 as MYCN transcriptional target: implications for neuroblastoma pathogenesis. Cancer Lett. 2005 Oct 18; 228(1-2):21-7.
    View in: PubMed
    Score: 0.004
  145. Xenobiotic stress induces hepatomegaly and liver tumors via the nuclear receptor constitutive androstane receptor. Mol Endocrinol. 2005 Jun; 19(6):1646-53.
    View in: PubMed
    Score: 0.004
  146. Adenoviral E1A targets Mdm4 to stabilize tumor suppressor p53. Cancer Res. 2004 Dec 15; 64(24):9080-5.
    View in: PubMed
    Score: 0.003
  147. Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389. Mol Cell Biol. 2004 Oct; 24(20):8884-94.
    View in: PubMed
    Score: 0.003
  148. RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties. Carcinogenesis. 2004 Feb; 25(2):157-67.
    View in: PubMed
    Score: 0.003
  149. 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol Cell Biol. 2003 Oct; 23(20):7096-107.
    View in: PubMed
    Score: 0.003
  150. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell. 2003 Mar 21; 112(6):779-91.
    View in: PubMed
    Score: 0.003
  151. The Brn-3a POU family transcription factor stimulates p53 gene expression in human and mouse tumour cells. Neurosci Lett. 2002 Dec 06; 334(1):1-4.
    View in: PubMed
    Score: 0.003
  152. p53 and Fas ligand are required for psoralen and UVA-induced apoptosis in mouse epidermal cells. Cell Death Differ. 2002 May; 9(5):549-60.
    View in: PubMed
    Score: 0.003
  153. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J Biol Chem. 2002 May 31; 277(22):19251-4.
    View in: PubMed
    Score: 0.003
  154. p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev. 2000 Sep 15; 14(18):2358-65.
    View in: PubMed
    Score: 0.003
  155. Germ cell expression of an isolated human endogenous retroviral long terminal repeat of the HERV-K/HTDV family in transgenic mice. J Virol. 1999 Dec; 73(12):9976-83.
    View in: PubMed
    Score: 0.002
  156. The p38MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53. Biochem Biophys Res Commun. 1999 Aug 02; 261(2):464-71.
    View in: PubMed
    Score: 0.002
  157. Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J. 1999 Apr 01; 18(7):1805-14.
    View in: PubMed
    Score: 0.002
  158. The cenpB gene is not essential in mice. Chromosoma. 1998 Dec; 107(8):570-6.
    View in: PubMed
    Score: 0.002
  159. Effective treatment of early endobronchial cancer with regional administration of liposome-p53 complexes. J Natl Cancer Inst. 1998 Aug 05; 90(15):1130-7.
    View in: PubMed
    Score: 0.002
  160. Bcl-2 inhibits p53 nuclear import following DNA damage. Oncogene. 1997 Dec 04; 15(23):2767-72.
    View in: PubMed
    Score: 0.002
  161. Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev. 1997 Mar 15; 11(6):714-25.
    View in: PubMed
    Score: 0.002
  162. Spatial and temporal patterns of expression of epidermal growth factor, transforming growth factor alpha and transforming growth factor beta 1-3 and their receptors in mouse jejunum after radiation treatment. Radiat Res. 1997 Jan; 147(1):1-12.
    View in: PubMed
    Score: 0.002
  163. mdm2 deletion does not alter growth characteristics of p53-deficient embryo fibroblasts. Oncogene. 1996 Oct 17; 13(8):1731-6.
    View in: PubMed
    Score: 0.002
  164. Developmental control of transcription of the CAT reporter gene by a truncated mouse alphafetoprotein gene regulatory region in transgenic mice. Mol Reprod Dev. 1995 Sep; 42(1):1-6.
    View in: PubMed
    Score: 0.002
  165. Characterization of a murine p53ser246 mutant equivalent to the human p53ser249 associated with hepatocellular carcinoma and aflatoxin exposure. Mol Carcinog. 1995 Jun; 13(2):104-11.
    View in: PubMed
    Score: 0.002
  166. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol. 1994 Oct; 14(10):6858-67.
    View in: PubMed
    Score: 0.002
  167. SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene. 1993 Oct; 8(10):2805-12.
    View in: PubMed
    Score: 0.002
  168. Tissue-specific expression of the mouse alpha 2(I) collagen promoter. Studies in transgenic mice and in tissue culture cells. J Biol Chem. 1992 Sep 25; 267(27):19622-30.
    View in: PubMed
    Score: 0.001
  169. Reduced amounts of cartilage collagen fibrils and growth plate anomalies in transgenic mice harboring a glycine-to-cysteine mutation in the mouse type II procollagen alpha 1-chain gene. Proc Natl Acad Sci U S A. 1991 Nov 01; 88(21):9648-52.
    View in: PubMed
    Score: 0.001
  170. The expression of viral and cellular genes in papillomas of the choroid plexus induced in transgenic mice. Prog Clin Biol Res. 1988; 284:163-86.
    View in: PubMed
    Score: 0.001
  171. Relationship between simian virus 40 large tumor antigen expression and tumor formation in transgenic mice. J Virol. 1987 Jun; 61(6):2029-32.
    View in: PubMed
    Score: 0.001
  172. Serotonin 5-HT1C receptors are expressed at high density on choroid plexus tumors from transgenic mice. Brain Res. 1986 Oct 22; 385(2):389-94.
    View in: PubMed
    Score: 0.001
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.