Connection

Co-Authors

This is a "connection" page, showing publications co-authored by NARAYAN SAHOO and XIAORONG RONALD ZHU.
Connection Strength

4.245
  1. 3D treatment planning system-Varian Eclipse for proton therapy planning. Med Dosim. 2018 Summer; 43(2):184-194.
    View in: PubMed
    Score: 0.642
  2. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system. Med Phys. 2013 Apr; 40(4):041723.
    View in: PubMed
    Score: 0.446
  3. Patient-specific quality assurance for prostate cancer patients receiving spot scanning proton therapy using single-field uniform dose. Int J Radiat Oncol Biol Phys. 2011 Oct 01; 81(2):552-9.
    View in: PubMed
    Score: 0.384
  4. Intensity modulated proton arc therapy via geometry-based energy selection for ependymoma. J Appl Clin Med Phys. 2023 Jul; 24(7):e13954.
    View in: PubMed
    Score: 0.222
  5. Synchrotron-Based Pencil Beam Scanning Nozzle with an Integrated Mini-Ridge Filter: A Dosimetric Study to Optimize Treatment Delivery. Cancers (Basel). 2017 Dec 13; 9(12).
    View in: PubMed
    Score: 0.154
  6. Technical Note: Dosimetric characteristics of the ocular beam line and commissioning data for an ocular proton therapy planning system at the Proton Therapy Center Houston. Med Phys. 2017 Dec; 44(12):6661-6671.
    View in: PubMed
    Score: 0.153
  7. Towards effective and efficient patient-specific quality assurance for spot scanning proton therapy. Cancers (Basel). 2015 Apr 10; 7(2):631-47.
    View in: PubMed
    Score: 0.128
  8. A single-field integrated boost treatment planning technique for spot scanning proton therapy. Radiat Oncol. 2014 Sep 11; 9:202.
    View in: PubMed
    Score: 0.123
  9. Multifield optimization intensity modulated proton therapy for head and neck tumors: a translation to practice. Int J Radiat Oncol Biol Phys. 2014 Jul 15; 89(4):846-53.
    View in: PubMed
    Score: 0.121
  10. Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance. Med Phys. 2013 Feb; 40(2):021703.
    View in: PubMed
    Score: 0.110
  11. Parameterization of multiple Bragg curves for scanning proton beams using simultaneous fitting of multiple curves. Phys Med Biol. 2011 Dec 21; 56(24):7725-35.
    View in: PubMed
    Score: 0.101
  12. A CT-based software tool for evaluating compensator quality in passively scattered proton therapy. Phys Med Biol. 2010 Nov 21; 55(22):6759-71.
    View in: PubMed
    Score: 0.094
  13. Experimental characterization of the low-dose envelope of spot scanning proton beams. Phys Med Biol. 2010 Jun 21; 55(12):3467-78.
    View in: PubMed
    Score: 0.092
  14. Intensity modulated proton therapy treatment planning using single-field optimization: the impact of monitor unit constraints on plan quality. Med Phys. 2010 Mar; 37(3):1210-9.
    View in: PubMed
    Score: 0.090
  15. Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Med Phys. 2010 Jan; 37(1):154-63.
    View in: PubMed
    Score: 0.089
  16. A procedure for calculation of monitor units for passively scattered proton radiotherapy beams. Med Phys. 2008 Nov; 35(11):5088-97.
    View in: PubMed
    Score: 0.082
  17. Mimicking large spot-scanning radiation fields for proton FLASH preclinical studies with a robotic motion platform. ArXiv. 2024 Sep 14.
    View in: PubMed
    Score: 0.062
  18. A Novel Polymer-Encapsulated Multi-Imaging Modality Fiducial Marker with Positive Signal Contrast for Image-Guided Radiation Therapy. Cancers (Basel). 2024 Jan 31; 16(3).
    View in: PubMed
    Score: 0.059
  19. The first probe of a FLASH proton beam by PET. Phys Med Biol. 2023 Nov 23; 68(23).
    View in: PubMed
    Score: 0.058
  20. The first PET glimpse of a proton FLASH beam. Phys Med Biol. 2023 06 07; 68(12).
    View in: PubMed
    Score: 0.056
  21. Adaptation and dosimetric commissioning of a synchrotron-based proton beamline for FLASH experiments. Phys Med Biol. 2022 08 05; 67(16).
    View in: PubMed
    Score: 0.053
  22. Our Experience Leading a Large Medical Physics Practice During the COVID-19 Pandemic. Adv Radiat Oncol. 2021 Jul-Aug; 6(4):100683.
    View in: PubMed
    Score: 0.049
  23. Transitioning from measurement-based to combined patient-specific quality assurance for intensity-modulated proton therapy. Br J Radiol. 2020 Mar; 93(1107):20190669.
    View in: PubMed
    Score: 0.044
  24. Patterns of protein expression in human head and neck cancer cell lines differ after proton vs photon radiotherapy. Head Neck. 2020 02; 42(2):289-301.
    View in: PubMed
    Score: 0.044
  25. Proton versus photon radiation-induced cell death in head and neck cancer cells. Head Neck. 2019 01; 41(1):46-55.
    View in: PubMed
    Score: 0.041
  26. Human papillomavirus status and the relative biological effectiveness of proton radiotherapy in head and neck cancer cells. Head Neck. 2017 04; 39(4):708-715.
    View in: PubMed
    Score: 0.036
  27. Selective robust optimization: A new intensity-modulated proton therapy optimization strategy. Med Phys. 2015 Aug; 42(8):4840-7.
    View in: PubMed
    Score: 0.033
  28. Is there a clinical benefit with a smooth compensator design compared with a plunged compensator design for passive scattered protons? Med Dosim. 2015; 40(1):37-43.
    View in: PubMed
    Score: 0.031
  29. Clinical implementation of intensity modulated proton therapy for thoracic malignancies. Int J Radiat Oncol Biol Phys. 2014 Nov 15; 90(4):809-18.
    View in: PubMed
    Score: 0.031
  30. Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers. Pract Radiat Oncol. 2015 Mar-Apr; 5(2):e77-86.
    View in: PubMed
    Score: 0.031
  31. Evaluation and mitigation of the interplay effects of intensity modulated proton therapy for lung cancer in a clinical setting. Pract Radiat Oncol. 2014 Nov-Dec; 4(6):e259-68.
    View in: PubMed
    Score: 0.031
  32. On the interplay effects with proton scanning beams in stage III lung cancer. Med Phys. 2014 Feb; 41(2):021721.
    View in: PubMed
    Score: 0.030
  33. Dosimetric benefits of robust treatment planning for intensity modulated proton therapy for base-of-skull cancers. Pract Radiat Oncol. 2014 Nov-Dec; 4(6):384-91.
    View in: PubMed
    Score: 0.029
  34. Comparison of proton therapy techniques for treatment of the whole brain as a component of craniospinal radiation. Radiat Oncol. 2013 Dec 17; 8:289.
    View in: PubMed
    Score: 0.029
  35. Improving spot-scanning proton therapy patient specific quality assurance with HPlusQA, a second-check dose calculation engine. Med Phys. 2013 Dec; 40(12):121708.
    View in: PubMed
    Score: 0.029
  36. Quality of life and toxicity from passively scattered and spot-scanning proton beam therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2013 Dec 01; 87(5):946-53.
    View in: PubMed
    Score: 0.029
  37. Quality assurance of proton beams using a multilayer ionization chamber system. Med Phys. 2013 Sep; 40(9):092102.
    View in: PubMed
    Score: 0.029
  38. Spot-scanning beam proton therapy vs intensity-modulated radiation therapy for ipsilateral head and neck malignancies: a treatment planning comparison. Med Dosim. 2013; 38(4):390-4.
    View in: PubMed
    Score: 0.029
  39. Statistical assessment of proton treatment plans under setup and range uncertainties. Int J Radiat Oncol Biol Phys. 2013 Aug 01; 86(5):1007-13.
    View in: PubMed
    Score: 0.028
  40. Fast range-corrected proton dose approximation method using prior dose distribution. Phys Med Biol. 2012 Jun 07; 57(11):3555-69.
    View in: PubMed
    Score: 0.026
  41. Beyond Gaussians: a study of single-spot modeling for scanning proton dose calculation. Phys Med Biol. 2012 Feb 21; 57(4):983-97.
    View in: PubMed
    Score: 0.026
  42. A procedure to determine the planar integral spot dose values of proton pencil beam spots. Med Phys. 2012 Feb; 39(2):891-900.
    View in: PubMed
    Score: 0.026
  43. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy. Med Phys. 2011 Jul; 38(7):4329-37.
    View in: PubMed
    Score: 0.025
  44. A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties. Int J Radiat Oncol Biol Phys. 2012 Feb 01; 82(2):e329-36.
    View in: PubMed
    Score: 0.025
  45. Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array. Med Phys. 2010 Nov; 37(11):5831-7.
    View in: PubMed
    Score: 0.024
  46. An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle. Med Phys. 2010 Sep; 37(9):4960-70.
    View in: PubMed
    Score: 0.023
  47. Measurement of neutron dose equivalent and its dependence on beam configuration for a passive scattering proton delivery system. Int J Radiat Oncol Biol Phys. 2010 Apr; 76(5):1563-70.
    View in: PubMed
    Score: 0.022
  48. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams. Phys Med Biol. 2010 Feb 07; 55(3):711-21.
    View in: PubMed
    Score: 0.022
  49. Computation of doses for large-angle Coulomb scattering of proton pencil beams. Phys Med Biol. 2009 Dec 21; 54(24):7285-300.
    View in: PubMed
    Score: 0.022
  50. An overview of the comprehensive proton therapy machine quality assurance procedures implemented at The University of Texas M. D. Anderson Cancer Center Proton Therapy Center-Houston. Med Phys. 2009 Jun; 36(6):2269-82.
    View in: PubMed
    Score: 0.021
  51. LiF TLD-100 as a dosimeter in high energy proton beam therapy--can it yield accurate results? Med Dosim. 2010; 35(1):63-6.
    View in: PubMed
    Score: 0.021
  52. Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions. Phys Med Biol. 2008 Aug 21; 53(16):4455-70.
    View in: PubMed
    Score: 0.020
  53. Incorporating partial shining effects in proton pencil-beam dose calculation. Phys Med Biol. 2008 Feb 07; 53(3):605-16.
    View in: PubMed
    Score: 0.019
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.