Connection

Co-Authors

This is a "connection" page, showing publications co-authored by XIAODONG ZHANG and MICHAEL GILLIN.
Connection Strength

1.141
  1. Selective robust optimization: A new intensity-modulated proton therapy optimization strategy. Med Phys. 2015 Aug; 42(8):4840-7.
    View in: PubMed
    Score: 0.132
  2. Clinical implementation of intensity modulated proton therapy for thoracic malignancies. Int J Radiat Oncol Biol Phys. 2014 Nov 15; 90(4):809-18.
    View in: PubMed
    Score: 0.125
  3. Evaluation and mitigation of the interplay effects of intensity modulated proton therapy for lung cancer in a clinical setting. Pract Radiat Oncol. 2014 Nov-Dec; 4(6):e259-68.
    View in: PubMed
    Score: 0.124
  4. On the interplay effects with proton scanning beams in stage III lung cancer. Med Phys. 2014 Feb; 41(2):021721.
    View in: PubMed
    Score: 0.119
  5. Improving spot-scanning proton therapy patient specific quality assurance with HPlusQA, a second-check dose calculation engine. Med Phys. 2013 Dec; 40(12):121708.
    View in: PubMed
    Score: 0.118
  6. Parameterization of multiple Bragg curves for scanning proton beams using simultaneous fitting of multiple curves. Phys Med Biol. 2011 Dec 21; 56(24):7725-35.
    View in: PubMed
    Score: 0.102
  7. Intensity modulated proton therapy treatment planning using single-field optimization: the impact of monitor unit constraints on plan quality. Med Phys. 2010 Mar; 37(3):1210-9.
    View in: PubMed
    Score: 0.091
  8. Effect of anatomic motion on proton therapy dose distributions in prostate cancer treatment. Int J Radiat Oncol Biol Phys. 2007 Feb 01; 67(2):620-9.
    View in: PubMed
    Score: 0.073
  9. Robust optimization in intensity-modulated proton therapy to account for anatomy changes in lung cancer patients. Radiother Oncol. 2015 Mar; 114(3):367-72.
    View in: PubMed
    Score: 0.032
  10. A single-field integrated boost treatment planning technique for spot scanning proton therapy. Radiat Oncol. 2014 Sep 11; 9:202.
    View in: PubMed
    Score: 0.031
  11. Multifield optimization intensity modulated proton therapy for head and neck tumors: a translation to practice. Int J Radiat Oncol Biol Phys. 2014 Jul 15; 89(4):846-53.
    View in: PubMed
    Score: 0.030
  12. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system. Med Phys. 2013 Apr; 40(4):041723.
    View in: PubMed
    Score: 0.028
  13. Use of treatment log files in spot scanning proton therapy as part of patient-specific quality assurance. Med Phys. 2013 Feb; 40(2):021703.
    View in: PubMed
    Score: 0.028
  14. Dynamically accumulated dose and 4D accumulated dose for moving tumors. Med Phys. 2012 Dec; 39(12):7359-67.
    View in: PubMed
    Score: 0.028
  15. External-beam accelerated partial breast irradiation using multiple proton beam configurations. Int J Radiat Oncol Biol Phys. 2011 Aug 01; 80(5):1464-72.
    View in: PubMed
    Score: 0.023
  16. Incorporating partial shining effects in proton pencil-beam dose calculation. Phys Med Biol. 2008 Feb 07; 53(3):605-16.
    View in: PubMed
    Score: 0.020
  17. Proton radiotherapy for liver tumors: dosimetric advantages over photon plans. Med Dosim. 2008; 33(4):259-67.
    View in: PubMed
    Score: 0.020
  18. Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma. Int J Radiat Oncol Biol Phys. 2005 Oct 01; 63(2):594-601.
    View in: PubMed
    Score: 0.017
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.