Connection

Co-Authors

This is a "connection" page, showing publications co-authored by JEFFREY E GERSHENWALD and JENNIFER WARGO.
Connection Strength

3.045
  1. Author Correction: Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature. 2023 Jan; 613(7945):E3.
    View in: PubMed
    Score: 0.217
  2. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science. 2021 Dec 24; 374(6575):1632-1640.
    View in: PubMed
    Score: 0.202
  3. Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in Braf-mutated melanoma. Oncoimmunology. 2021; 10(1):1992880.
    View in: PubMed
    Score: 0.200
  4. Identification of MicroRNA-mRNA Networks in Melanoma and Their Association with PD-1 Checkpoint Blockade Outcomes. Cancers (Basel). 2021 Oct 22; 13(21).
    View in: PubMed
    Score: 0.200
  5. Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial. Lancet Oncol. 2018 02; 19(2):181-193.
    View in: PubMed
    Score: 0.154
  6. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov. 2016 08; 6(8):827-37.
    View in: PubMed
    Score: 0.138
  7. Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma. Oncoimmunology. 2016 Mar; 5(3):e1136044.
    View in: PubMed
    Score: 0.134
  8. Gut Microbiome in Patients With Early-Stage and Late-Stage Melanoma. JAMA Dermatol. 2023 10 01; 159(10):1076-1084.
    View in: PubMed
    Score: 0.057
  9. Presence of Circulating Tumor Cells Predates Imaging Detection of Relapse in Patients with Stage III Melanoma. Cancers (Basel). 2023 Jul 15; 15(14).
    View in: PubMed
    Score: 0.056
  10. Melanoma metastatic to the adrenal gland: An update on the role of adrenalectomy in multidisciplinary management. J Surg Oncol. 2023 Aug; 128(2):313-321.
    View in: PubMed
    Score: 0.055
  11. Author Correction: Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature. 2023 Mar; 615(7953):E23.
    View in: PubMed
    Score: 0.055
  12. Obesity Is Associated with Altered Tumor Metabolism in Metastatic Melanoma. Clin Cancer Res. 2023 01 04; 29(1):154-164.
    View in: PubMed
    Score: 0.054
  13. Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature. 2022 11; 611(7934):155-160.
    View in: PubMed
    Score: 0.054
  14. Correction to: Neoadjuvant Systemic Therapy (NAST) in Patients with Melanoma: Surgical Considerations by the International Neoadjuvant Melanoma Consortium (INMC). Ann Surg Oncol. 2022 Aug; 29(8):5241-5242.
    View in: PubMed
    Score: 0.053
  15. Multi-modal molecular programs regulate melanoma cell state. Nat Commun. 2022 07 09; 13(1):4000.
    View in: PubMed
    Score: 0.052
  16. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature. 2022 06; 606(7915):797-803.
    View in: PubMed
    Score: 0.052
  17. Outcomes After Sphincter-Sparing Local Therapy for Anorectal Melanoma: 1989 to 2020. Pract Radiat Oncol. 2022 Sep-Oct; 12(5):437-445.
    View in: PubMed
    Score: 0.051
  18. Neoadjuvant Systemic Therapy (NAST) in Patients with Melanoma: Surgical Considerations by the International Neoadjuvant Melanoma Consortium (INMC). Ann Surg Oncol. 2022 Jun; 29(6):3694-3708.
    View in: PubMed
    Score: 0.051
  19. Evaluation of Plasma IL-6 in Patients with Melanoma as a Prognostic and Checkpoint Immunotherapy Predictive Biomarker. J Invest Dermatol. 2022 07; 142(7):2046-2049.e3.
    View in: PubMed
    Score: 0.051
  20. Utilization and evolving prescribing practice of opioid and non-opioid analgesics in patients undergoing lymphadenectomy for cutaneous malignancy. J Surg Oncol. 2022 Mar; 125(4):719-729.
    View in: PubMed
    Score: 0.050
  21. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat Med. 2021 08; 27(8):1432-1441.
    View in: PubMed
    Score: 0.049
  22. Nodal Recurrence is a Primary Driver of Early Relapse for Patients with Sentinel Lymph Node-Positive Melanoma in the Modern Therapeutic Era. Ann Surg Oncol. 2021 Jul; 28(7):3480-3489.
    View in: PubMed
    Score: 0.048
  23. Histopathological features of complete pathological response predict recurrence-free survival following neoadjuvant targeted therapy for metastatic melanoma. Ann Oncol. 2020 11; 31(11):1569-1579.
    View in: PubMed
    Score: 0.046
  24. Functional annotation of melanoma risk loci identifies novel susceptibility genes. Carcinogenesis. 2020 06 17; 41(4):452-457.
    View in: PubMed
    Score: 0.045
  25. Circulating Tumor Cells and Early Relapse in Node-positive Melanoma. Clin Cancer Res. 2020 04 15; 26(8):1886-1895.
    View in: PubMed
    Score: 0.044
  26. Cumulative Incidence and Predictors of CNS Metastasis for Patients With American Joint Committee on Cancer 8th Edition Stage III Melanoma. J Clin Oncol. 2020 05 01; 38(13):1429-1441.
    View in: PubMed
    Score: 0.044
  27. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020 01; 577(7791):549-555.
    View in: PubMed
    Score: 0.044
  28. Prognostic model for patient survival in primary anorectal mucosal melanoma: stage at presentation determines relevance of histopathologic features. Mod Pathol. 2020 03; 33(3):496-513.
    View in: PubMed
    Score: 0.043
  29. Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium. Lancet Oncol. 2019 07; 20(7):e378-e389.
    View in: PubMed
    Score: 0.043
  30. Role of Immune Response, Inflammation, and Tumor Immune Response-Related Cytokines/Chemokines in Melanoma Progression. J Invest Dermatol. 2019 11; 139(11):2352-2358.e3.
    View in: PubMed
    Score: 0.042
  31. Molecular Profiling Reveals Unique Immune and Metabolic Features of Melanoma Brain Metastases. Cancer Discov. 2019 05; 9(5):628-645.
    View in: PubMed
    Score: 0.041
  32. Author Correction: Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med. 2018 Dec; 24(12):1941.
    View in: PubMed
    Score: 0.041
  33. Publisher Correction: Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med. 2018 Dec; 24(12):1942.
    View in: PubMed
    Score: 0.041
  34. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med. 2018 11; 24(11):1649-1654.
    View in: PubMed
    Score: 0.040
  35. Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. Ann Oncol. 2018 08 01; 29(8):1861-1868.
    View in: PubMed
    Score: 0.040
  36. Prospective Analysis of Adoptive TIL Therapy in Patients with Metastatic Melanoma: Response, Impact of Anti-CTLA4, and Biomarkers to Predict Clinical Outcome. Clin Cancer Res. 2018 09 15; 24(18):4416-4428.
    View in: PubMed
    Score: 0.039
  37. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol. 2018 03; 19(3):310-322.
    View in: PubMed
    Score: 0.039
  38. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018 01 05; 359(6371):97-103.
    View in: PubMed
    Score: 0.038
  39. Association between Body Mass Index, C-Reactive Protein Levels, and Melanoma Patient Outcomes. J Invest Dermatol. 2017 08; 137(8):1792-1795.
    View in: PubMed
    Score: 0.037
  40. Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. NPJ Genom Med. 2017; 2.
    View in: PubMed
    Score: 0.036
  41. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017 03 01; 9(379).
    View in: PubMed
    Score: 0.036
  42. Clinicopathological features and clinical outcomes associated with TP53 and BRAFNon-V600 mutations in cutaneous melanoma patients. Cancer. 2017 04 15; 123(8):1372-1381.
    View in: PubMed
    Score: 0.036
  43. Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set. BMC Med. 2016 10 25; 14(1):168.
    View in: PubMed
    Score: 0.035
  44. The state of melanoma: challenges and opportunities. Pigment Cell Melanoma Res. 2016 07; 29(4):404-16.
    View in: PubMed
    Score: 0.034
  45. Association of Vitamin D Levels With Outcome in Patients With Melanoma After Adjustment For C-Reactive Protein. J Clin Oncol. 2016 05 20; 34(15):1741-7.
    View in: PubMed
    Score: 0.034
  46. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016 Feb; 6(2):202-16.
    View in: PubMed
    Score: 0.033
  47. Utility of BRAF V600E Immunohistochemistry Expression Pattern as a Surrogate of BRAF Mutation Status in 154 Patients with Advanced Melanoma. Hum Pathol. 2015 Aug; 46(8):1101-10.
    View in: PubMed
    Score: 0.032
  48. A landscape of driver mutations in melanoma. Cell. 2012 Jul 20; 150(2):251-63.
    View in: PubMed
    Score: 0.026
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.